Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propagation styrene polymerisation

Considering the above stereochemical model for syndiospecific styrene polymerisation, one may conclude reasonably that tf coordination of the monomer at the active site could hardly be possible, and r 2 coordination would always be involved in the syndiospecific polymerisation of this monomer [87]. One should note that preliminary concepts concerning the stereoregulation mechanism of syndiospecific styrene polymerisation assumed the styrene monomer to undergo only t]4 coordination at the titanium centre, the propagating chain being anchored via a benzylic bond as an t]3 ligand at the titanium [44,55,70]. [Pg.258]

The requirements for a polymerisation to be truly living are that the propagating chain ends must not terminate during polymerisation. If the initiation, propagation, and termination steps are sequential, ie, all of the chains are initiated and then propagate at the same time without any termination, then monodisperse (ie, = 1.0) polymer is produced. In general, anionic polymerisation is the only mechanism that yields truly living styrene... [Pg.518]

In the 1960s, after Kennedy and Thomas [25] had established the isomerisation polymerisation of 3-methylbutene-l, this became a popular subject. From Krentsel s group in the USSR and Aso s in Japan there came several claims to have obtained polymers of unconventional structure from various substituted styrenes by CP. They all had in common that an alleged hydride ion shift in the carbenium ion produced a propagating ion different from that which would result from the cationation of the C C of the monomer and therefore a polymer of unconventional structure the full references are in our papers. The monomers concerned are the 2-methyl-, 2-isopropyl-, 4-methyl-, 4-isopropyl-styrenes. The alleged evidence consisted of IR and proton magnetic resonance (PMR) spectra, and the hypothetical reaction scheme which the spectra were claimed to support can be exemplified thus ... [Pg.25]

G. E. Holdcroft, P. H. Plesch. The Propagation Rate-Constants for the Cationic Polymerisation of Acenaphthylene and Styrene in Nitrobenzene, Makromol Chem., 1984, 185, 27. [Pg.41]

Probably the earliest quantitative experiments on what are now known as cationic polymerisations were made by Gwyn Williams (1938) with styrene and stannic chloride, and by the early 1940s the general belief had become established that in reactions initiated by metal halides the active species is a cation. It appears that Evans and Meadows [3] were the first to state specifically that in hydrocarbon solvents the propagating cations must be paired with the anions and Plesch [4] made the first attempt at calculating the dissociation constant, KD, for an ion-pair comprising a growing cation in a hydrocarbon solvent ... [Pg.435]

However, there are also many systems in which the evidence indicates that the propagating species cannot be a carbenium ion. Such reactions have been termed pseudo-cationic and in these polymerisations the propagating species is believed to be an ester. The most thoroughly investigated systems comprise aromatic monomers (styrene, acenaphthylene [11]) and protonic acids (HC104) or iodine [11] as initiators. The simplest representation of the propagation is as the addition of the ester (stabilised by four styrene molecules) across the double-bond of the monomer [12] ... [Pg.444]

We report on the measurement of the propagation rate constants kp of styrene, indene, phenyl vinyl ether (PhViE) and 2-chloroethyl vinyl ether (CEViE) in nitrobenzene at (mostly) 298 K with 4-ClC6H4CO+SbF 6 as initiator. The dependence of the conductivity on the [4-ClC6H4CO+SbF"g] = c0 helped to establish that [Pn+] = c0 and thus to validate the foundation of this work. It is shown that most probably the propagating species are the uncomplexed, unpaired, solvated carbenium ions. Some new enthalpies of polymerisation have been found. [Pg.469]

This is the third report on attempts to measure the propagation rate constant, kp+, for the cationic polymerisation of various monomers in nitrobenzene by reaction calorimetry. The first two were concerned with acenaphthylene (ACN) [1, 2] and styrene [2]. The present work is concerned with attempts to extend the method to more rapidly polymerising monomers. With these we were working at the limits of the calorimetric technique [3] and therefore consistent kinetic results could be obtained only for indene and for phenyl vinyl ether (PhViE), the slowest of the vinyl ethers 2-chloroethyl vinyl ether (CEViE) proved to be so reactive that only a rough estimate of kp+ could be obtained. Most of our results were obtained with 4-chlorobenzoyl hexafluoroantimonate (1), and some with tris-(4-chlorophenyl)methyl hexafluorophosphate (2). A general discussion of the significance of all the kp values obtained in this work is presented. [Pg.469]

However, the discovery with the most far-reaching consequences arose from the close scrutiny of the results of Kunitake and Takarabe on the polymerisation of styrene by trifluoromethyl sulphonic acid. It became evident to the reviewer that in these reactions an important contribution to monomer consumption must have been made by the ester, and he was able to extract from the results the corresponding propagation rate-constants, kpu, for that cationoid insertion polymerisation. This became one of the most convincing supports for the author s views on cationoid insertions. [Pg.503]

In developing his theory of the polymerisations by ionising radiations Plesch now distinguishes between the mono-alkenes and other monomers, thus if a monomer, such as styrene, contains two donor groups, then both of these can be involved in the complex formation with the carbenium ion, but only the Jt-complex involving the double-bond can propagate. This means that Equation (40) must be replaced by... [Pg.535]

Table 6 The alleged propagation rate-constants of the species contributing to the polymerisation of 4-MeO-styrene in CH2CI2 at 10 °C by PhjCSbClg- according to Sauvet et a ., (1986) ... Table 6 The alleged propagation rate-constants of the species contributing to the polymerisation of 4-MeO-styrene in CH2CI2 at 10 °C by PhjCSbClg- according to Sauvet et a ., (1986) ...
The author s theory which has been used here was developed in detail to explain the polymerisations by ionising radiations of some alkyl vinyl ethers, the polymerisations of which proceed by secondary ions. Although it was shown that the theory is also perfectly serviceable for the tertiary carbenium ions considered here, it must be realised that there is a fundamental difference between these two types of carbenium ions. When one of the bonds of the carbenium ion is a C—H bond, the solvators, especially of course an ion, can get much closer to the positive centre, and they are therefore correspondingly more firmly held to which effect is added that of a smaller steric hindrance. The most researched monomer propagating by secondary cations, apart from the alkyl vinyl ethers, is, of course, styrene. Thus, Mayr s many studies with diaryl methylium cations are directly relevant to the polymerisation of styrene. [Pg.598]

The impact which was made by the writer s revival of the old ester mechanism in the context of polymerisations is attested by the number of polymer chemists who set about examining the validity of the theory experimentally. For example, Bywater in Canada confirmed that during the progress of a polymerisation of styrene by perchloric acid the acid could not be distilled out of the reaction mixture, but after exhaustion of the monomer it could be. This regeneration of the initiating acid after the consumption of the monomer is an often attested characteristic of pseudocationic polymerisations with many different protonic acids it is most simply explained by the decomposition of the ester to an alkene and the acid, i.e., a reversal of the initiation, when the monomer has been consumed. Enikolopian in the USSR found that the effect of pressure on the rate of polymerisation in the same system was not compatible with the propagation step involving an ion, and... [Pg.605]

One obvious test of the F-Cat theory was to try to synthesise the perchlorate ester of styrene and to find out whether it will act as a polymerisation initiator however, the ester is stable only in the presence of an excess of styrene. This proved to be the first instance of the stabilisation of a hyperactive ester by an electron donor to give a species which is sufficiently long-lived to be an effective propagator (C). [Pg.606]

In order to ascertain the nature of the propagating species in the polymerisation of styrene catalysed by perchloric acid in methylene dichloride we have investigated the behaviour of this system by (a) calorimetric, (b) spectroscopic, and (c) conductimetric techniques. All experiments were carried out in high-vacuum apparatus, with highly purified and dried reagents which were mixed by breaking phials or break-seals magnetically. [Pg.609]

These results indicate that in the polymerisation of styrene by perchloric acid the propagating species is not a carbonium ion (either free or paired), but a complex between acid and monomer. Our results indicate that this has the composition HC104, 4C8H8 and that it participates in the equilibrium... [Pg.610]

The kinetics of the polymerising system styrene-perchloric acid-methylene dichloride have been studied in the temperature range +19 °C to -19 °C, by a calorimetric technique. The propagation is pseudocationic, its rate constant at 19 °C is kp = 10.6 1 mole 1 s 1, and Ep = 11.6 kcal mole1. The elementary reactions are interpreted in detail by a mechanism involving an ester as chain carrier. [Pg.616]

Detailed studies led Gandini and Plesch to formulate the concept of pseudocationic polymerisations. These are reactions which show many of the characteristics of cationic polymerisations, but do not involve ions. Since they could see no other alternative compatible with general chemical knowledge, they formulated the reactive species as an ester, and they were able to support this view by direct experiments (formation of the ester in the styrene solution by metathesis). The evidence indicates that in the system styrene, perchloric acid, methylene dichloride, the poly(styryl perchlorate) ester requires four molecules of styrene for its stabilisation. When these are no longer available, the ester ionises, and the residual styrene is consumed by a very fast, truly cationic polymerisation ionisation of the ester is a complicated reaction which has been only partly elucidated. The initiation and propagation of the pseudocationic polymerisation can be represented thus ... [Pg.640]

The opposite of the stabilisation of an ester is its activation. If we include in the concept ester the alkyl halides, their Friedel-Crafts reactions provide familiar examples of this phenomenon. An unusual example especially relevant to our present considerations is provided by some results made available to me in advance of publication by Giusti and Andruzzi. Their results [38] on the polymerisation of styrene by iodine and hydrogen iodide can be interpreted in terms of an organic iodide derived from styrene, probably 1-phenylethyl iodide, being activated by the co-ordination of one or two molecules of iodine. This process appears to polarise the C—I bond to such an extent that the normally stable ester becomes activated to a chain-propagating species and induces a pseudocationic polymerisation ... [Pg.643]

The following discussion is based on our earlier conclusion that the propagating species in these polymerisations is oligostyryl perchlorate ester, which is stabilised in solution by excess styrene. One question arising concerns the number of molecules of styrene per ester molecule required for this stabilisation another concerns the kinetics and mechanism of the ionogenic reactions which ensue once the styrene concentration has been reduced by polymerisation to such a low level that the quantity of styrene no longer suffices to stabilise the ester. [Pg.661]

The species IA, IB, IC represent the chain-propagating ester molecules, stabilised by styrene, and they are equivalent from the point of view of the polymerisation. At the end of the polymerisation, the now unstabilised ester II reacts with its own kind to give the indanyl ion III and a saturated linear polymer IV. It is also in equilibrium with unsaturated polymer V, and it reacts with acid and/or V to give the polymer with indanyl end groups VI. This is equivalent to the transfer reaction with monomer which gives the indanyl end groups [23]. The oligostyryl ion VII can only be present in very small concentration, as it is much less stable than the other SD ions which co-exist with ion III [7] these other SD ions have been omitted from the scheme so as not to complicate it unnecessarily. [Pg.667]

The results of Enikolopyan and co-workers [27, 28] on the polymerisation of styrene by perchloric acid at high pressures shed some new light on the problem. Essentially their kinetic results agree with those of Pepper and Reilly and of ourselves. The important feature of their findings is that the extent of acceleration by pressure is merely that which can be attributed to increase of dielectric constant of the solvent. There was no effect which could be attributed to increasing abundance of free ions by increased dissociation of ion-pairs. This means that, if the propagating species are ions, then they are all free ions even at normal pressure (which is reasonable), or the propagating species is non-ionic. [Pg.669]

There has been considerable argument over the mechanism of the polymerisation of styrene by perchloric acid in halogenated solvents in the temperature range ca. 30 °C to ca. -20 °C [1-11]. By spectroscopic and conductance measurements, Gandini and Plesch [1] could not detect any carbenium ions during the polymerisation this and other evidence led them to conclude that the dominant propagating species is the ester, polystyryl perchlorate (I), which is stabilised by an excess of styrene. [Pg.674]

We conclude that the polymerisation of styrene by perchloric acid in methylene dichloride at 0 °C involves at least two types of independent propagating species. Rate studies and conductivity measurements, in conjunction with an independent study of molecular weight distributions [26, 27], indicate that these species include the perchlorate ester and the free polystyryl carbenium ion and that the term pseudocationic is a very appropriate description of what is a distinctive form of organic reaction. [Pg.682]


See other pages where Propagation styrene polymerisation is mentioned: [Pg.616]    [Pg.257]    [Pg.89]    [Pg.339]    [Pg.335]    [Pg.94]    [Pg.498]    [Pg.466]    [Pg.18]    [Pg.35]    [Pg.296]    [Pg.330]    [Pg.424]    [Pg.452]    [Pg.514]    [Pg.516]    [Pg.526]    [Pg.528]    [Pg.605]    [Pg.612]    [Pg.622]    [Pg.639]    [Pg.674]    [Pg.680]    [Pg.681]   
See also in sourсe #XX -- [ Pg.249 ]




SEARCH



Polymerisation propagation

Propagation styrene

Styrene polymerisation

© 2024 chempedia.info