Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral asymmetric hydrogenation

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards. Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards.
An even more impressive example of catalytic efficiency has recently been disclosed by Novartis (Bader and Bla.ser, 1997). The key step in a proce.ss for the synthesis of the optically active herbicide, (S)-metolachlor involves asymmetric hydrogenation of a prochiral imine catalysed by an iridium-ferrocenyldipho-sphine complex (see Fig. 2.36). [Pg.53]

In general, of the mixed phosphorus-thioether ligands that have been used in the asymmetric hydrogenation of prochiral olefins, the thioether-phosphinite ligands have provided some of the best results. As an example, a new class of thioether-phosphinite ligands developed by Evans et al. has recently proved to be very efficient for the rhodium-catalysed asymmetric hydrogenation of a... [Pg.244]

Several S/N ligands have also been investigated for the asymmetric hydrogenation of prochiral olefins. Thus, asymmetric enamide hydrogenations have been performed in the presence of S/N ligands and rhodium or ruthenium catalysts by Lemaire et al., giving enantioselectivities of up to 70% ee. Two... [Pg.253]

In addition, several S/S ligands were also investigated for the asymmetric hydrogenation of olefins. In 1977, James and McMillan reported the synthesis of various disulfoxide ligands, which were applied to the asymmetric ruthenium-catalysed hydrogenation of prochiral olefinic acid derivatives, such as itaconic acid. These ligands, depicted in Scheme 8.16, were active to provide... [Pg.254]

In 1998, Ruiz et al. reported the synthesis of new chiral dithioether ligands based on a pyrrolidine backbone from (+ )-L-tartaric acid. Their corresponding cationic iridium complexes were further evaluated as catalysts for the asymmetric hydrogenation of prochiral dehydroamino acid derivatives and itaconic acid, providing enantioselectivities of up to 68% ee, as shown in Scheme 8.18. [Pg.255]

Enantioselectivities of up to 47% ee were reported by Ruiz et al. in 1997 for the asymmetric hydrogenation of various prochiral dehydroamino acid derivatives and itaconic acid by using iridium cationic complexes of the novel chiral... [Pg.257]

In recent years, the asymmetric hydrogenation of prochiral olefins have been developed in the presence of various chiral sulfur-containing ligands combined with rhodium, iridium or more rarely ruthenium catalysts. The best results have been obtained by using S/P ligands, with enantioselectivities of up to 99% ee in... [Pg.267]

The tetradentate ligands (340) and (341) form 1 1 metakligand complexes with [IrCl(cod)]2.548 The complexes were tested in the asymmetric hydrogenation of prochiral olefins, providing enantioselectivities up to 36%. The multitopic ligands L, (342) and (343), bind to Ir1 to form [IrL] species which have been characterized by elemental analysis, mass spectrometry, IR and NMR spectroscopy.549 The complexes show enantioselectivities of up to 30% for the hydrogenation of prochiral olefins under mild reaction conditions. [Pg.210]

Prochiral organic acids were hydrogenated on clay-supported Rh-chiral phosphine complexes.205,206 Hectorite-supported chiral Rh(I)-phosphine complexes were used for the asymmetric hydrogenation of a,P-unsaturated carboxylic acids.207 It was found that the interaction between the a-ester group of itaconates and phenyl groups of phosphine can play an important role in the determination of the configuration of products. [Pg.265]

Ruthenium complexes of (129) and (130)336 were investigated for the asymmetric hydrogenation of prochiral 2-R-propenoic acids (Scheme 62a) rhodium complexes of these ligands were used for hydrogenation of acetoamido-cinnamic acid methyl ester (Scheme 62c) and hydrogenation of acetophenone-benzylamine (Scheme 62b). The results obtained with these... [Pg.119]

When a chiral ansa-type zirconocene/MAO system was used as the catalyst precursor for polymerization of 1,5-hexadiene, an main-chain optically active polymer (68% trans rings) was obtained84-86. The enantioselectivity for this cyclopolymerization can be explained by the fact that the same prochiral face of the olefins was selected by the chiral zirconium center (Eq. 12) [209-211]. Asymmetric hydrogenation, as well as C-C bond formation catalyzed by chiral ansa-metallocene 144, has recently been developed to achieve high enantioselectivity88-90. This parallels to the high stereoselectivity in the polymerization. [Pg.34]

The asymmetric organosilane reduction of prochiral ketones has been studied as an alternative to the asymmetric hydrogenation approach. A wide variety of chiral ligand systems in combination with transition metals can be employed for this purpose. The majority of these result in good to excellent chemical yields of the corresponding alcohols along with a trend for better ee results with aryl alkyl ketones than with prochiral dialkyl ketones. [Pg.105]

A number of asymmetric hydrogenations of prochiral ketones to highly enan-tiomerically enriched alcohols are available. A select few are highlighted here. [Pg.112]

Asymmetric transfer hydrogenation can be employed in the asymmetric hydrogenation of prochiral ketones with a ruthenium complex of bis(oxazolinylmethyl) amine ligand 110. Enantioselectivities are greater than 95%.643... [Pg.113]

As an extension of the asymmetric hydrogenation of prochiral ketones to enantiomerically enriched alcohols, the reduction of imines has been a topic of interest in obtaining chiral amines of high enantiomeric purity. Several entries to enantiomerically enriched amines based on the approaches outlined above are available. These asymmetric hydrogenations have proved to be more difficult than those for prochiral ketones, but nevertheless show good promise. [Pg.119]

The bis-DIOP complex HRh[(+)-DIOP]2 has been used under mild conditions for catalytic asymmetric hydrogenation of several prochiral olefinic carboxylic acids (273-275). Optical yields for reduction of N-acetamidoacrylic acid (56% ee) and atropic acid (37% ee) are much lower than those obtained using the mono-DIOP catalysts (10, II, 225). The rates in the bis-DIOP systems, however, are much slower, and the hydrogenations are complicated by slow formation of the cationic complex Rh(DIOP)2+ (271, 273, 274) through reaction of the starting hydride with protons from the substrate under H2 the cationic dihydride is maintained [cf. Eq. (25)] ... [Pg.352]

Use of RuCl2(PPh3)3 with a glucofuranose derivative (61) as donor solvent leads to asymmetric hydrogenation of prochiral a,/3-unsaturated ketones to the saturated ketones, with up to 34% ee in the case of a cyclohexene-3-one (497). [Pg.382]

The development of chiral phosphorus ligands has made undoubtedly significant impact on the asymmetric hydrogenation. Transition metal catalysts with efficient chiral phosphorus ligands have enabled the synthesis of a variety of chiral products from prochiral olefins, ketones, and imines in a very efficient manner, and many practical hydrogenation processes have been exploited in industry for the synthesis of chiral drugs and fine chemicals. [Pg.62]

Following Wilkinson s discovery of [RhCl(PPh3)3] as an homogeneous hydrogenation catalyst for unhindered alkenes [14b, 35], and the development of methods to prepare chiral phosphines by Mislow [36] and Horner [37], Knowles [38] and Horner [15, 39] each showed that, with the use of optically active tertiary phosphines as ligands in complexes of rhodium, the enantioselective asymmetric hydrogenation of prochiral C=C double bonds is possible (Scheme 1.8). [Pg.18]

Under isobaric conditions (k2 = k2 H2 J. many hydrogenations exactly follow this model. The classical example is the asymmetric hydrogenation of prochiral dehydroamino acid derivatives with Rh or Ru catalysts [21]. [Pg.259]

The catalytic asymmetric hydrogenation with cationic Rh(I)-complexes is one of the best-understood selection processes, the reaction sequence having been elucidated by Halpern, Landis and colleagues [21a, b], as well as by Brown et al. [55]. Diastereomeric substrate complexes are formed in pre-equilibria from the solvent complex, as the active species, and the prochiral olefin. They react in a series of elementary steps - oxidative addition of hydrogen, insertion, and reductive elimination - to yield the enantiomeric products (cf. Scheme 10.2) [56]. [Pg.277]

Table 27.2 Asymmetric hydrogenation of other prochiral olefins. [Pg.904]


See other pages where Prochiral asymmetric hydrogenation is mentioned: [Pg.14]    [Pg.89]    [Pg.243]    [Pg.259]    [Pg.314]    [Pg.173]    [Pg.196]    [Pg.541]    [Pg.155]    [Pg.76]    [Pg.84]    [Pg.114]    [Pg.116]    [Pg.2]    [Pg.55]    [Pg.62]    [Pg.25]    [Pg.284]    [Pg.456]    [Pg.783]    [Pg.883]    [Pg.978]    [Pg.983]    [Pg.1165]    [Pg.1194]    [Pg.1445]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Prochiral

Prochiral asymmetrization

Prochirality

© 2024 chempedia.info