Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probes spatial resolution

Plenary 8. J Grave et al, e-mail address J.Greve tn.utwente.nl (RS). Confocal direct unaging Raman microscope (CDIRM) for probing of the human eye lens. High spatial resolution of the distribution of water and cholesterol in lenses. [Pg.1218]

Figure Bl.19.30. Height and friction images of a spin-cast polystyrene-poly(methyl methacrylate) blend obtained with (a) gold and (b) silica probes under perfluorodecalin. Note the reversal of frictional contrast and the high spatial resolution. (Taken from [142], figure 7.)... Figure Bl.19.30. Height and friction images of a spin-cast polystyrene-poly(methyl methacrylate) blend obtained with (a) gold and (b) silica probes under perfluorodecalin. Note the reversal of frictional contrast and the high spatial resolution. (Taken from [142], figure 7.)...
Sample preparation is straightforward for a scattering process such as Raman spectroscopy. Sample containers can be of glass or quartz, which are weak Raman scatterers, and aqueous solutions pose no problems. Raman microprobes have a spatial resolution of - 1 //m, much better than the diffraction limit imposed on ir microscopes (213). Eiber-optic probes can be used in process monitoring (214). [Pg.318]

Electron Probe Microanalysis, EPMA, as performed in an electron microprobe combines EDS and WDX to give quantitative compositional analysis in the reflection mode from solid surfaces together with the morphological imaging of SEM. The spatial resolution is restricted by the interaction volume below the surface, varying from about 0.2 pm to 5 pm. Flat samples are needed for the best quantitative accuracy. Compositional mapping over a 100 x 100 micron area can be done in 15 minutes for major components Z> 11), several hours for minor components, and about 10 hours for trace elements. [Pg.119]

The uniqueness and desirability of EELS is realized when it is combined with the power of a TEM or STEM to form an Analytical Electron Microscope (AEM). This combination allows the analyst to perform spatially resolved nondestructive analysis with high-resolution imaging (< 3 A). Thus, not oiJy can the analyst observe the microstructure of interest (see the TEM article) but, by virtue of the focusing ability of the incident beam in the electron microscope, he or she can simultaneously analyze a specific region of interest. Lateral spatial resolutions of regions as small as 10 A in diameter are achievable with appropriate specimens and probe-forming optics in the electron microscope. [Pg.136]

The spatial resolution of the CI SEM mode depends mainly on the electron-probe size, the size of the excitation volume, which is related to the electron-beam penetration range in the material (see the articles on SEM and EPMA), and the minority carrier diffusion. The spatial resolution also may be afiFected by the signal-to-noise ratio, mechanical vibrations, and electromagnetic interference. In practice, the spatial resolution is determined basically by the size of the excitation volume, and will be between about 0.1 and 1 pm ... [Pg.153]

The electron probe X-ray microanalyzer provides extraordinary power for measuring the elemental composition of solid matter with pm lateral spatial resolution. The spatial resolution, limited by the spread of the beam within the specimen, permits pg samples to be measured selectively, with elemental coverage from boron to the actinides. By incorporating the imaging capability of the SEM, the electron probe X-ray microanalyzer combines morphological and compositional information. [Pg.190]

There also will be improvements in instrumentadon and software to decrease data acquisidon time. Changes can be made to improve lateral spatial resolution. For example, if the probe monochromator is replaced by a tunable dye laser spadal resolutions down to about 10 pm can be achieved. [Pg.399]

An additional advantage to neutron reflectivity is that high-vacuum conditions are not required. Thus, while studies on solid films can easily be pursued by several techniques, studies involving solvents or other volatile fluids are amenable only to reflectivity techniques. Neutrons penetrate deeply into a medium without substantial losses due to absorption. For example, a hydrocarbon film with a density of Ig cm havii a thickness of 2 mm attenuates the neutron beam by only 50%. Consequently, films several pm in thickness can be studied by neutron reflecdvity. Thus, one has the ability to probe concentration gradients at interfaces that are buried deep within a specimen while maintaining the high spatial resolution. Materials like quartz, sapphire, or aluminum are transparent to neutrons. Thus, concentration profiles at solid interfaces can be studied with neutrons, which simply is not possible with other techniques. [Pg.661]

With the use of appropriate transmission optics, high focusing of the laser light is carried out and the extension of the optical probe is considerably reduced. Accordingly, laser-based techniques offer the possibility of measurements of high spatial resolution. [Pg.1169]

The technique of photoemission electron spectroscopy (PEEM) is a particularly attractive and important one for spatially resolved work function measurements, as both the Kelvin probe technique and UPS are integral methods with very poor ( mm) spatial resolution. The PEEM technique, pioneered in the area of catalysis by Ertl,72-74 Block75 76 and Imbihl,28 has been used successfully to study catalytic oscillatory phenomena on noble metal surfaces.74,75... [Pg.257]


See other pages where Probes spatial resolution is mentioned: [Pg.130]    [Pg.130]    [Pg.697]    [Pg.559]    [Pg.1283]    [Pg.1298]    [Pg.1298]    [Pg.1541]    [Pg.1625]    [Pg.1625]    [Pg.1681]    [Pg.101]    [Pg.117]    [Pg.162]    [Pg.164]    [Pg.179]    [Pg.280]    [Pg.281]    [Pg.297]    [Pg.311]    [Pg.324]    [Pg.372]    [Pg.393]    [Pg.414]    [Pg.418]    [Pg.474]    [Pg.703]    [Pg.263]    [Pg.193]    [Pg.175]    [Pg.179]    [Pg.28]    [Pg.16]    [Pg.266]    [Pg.5]    [Pg.365]    [Pg.223]    [Pg.4]    [Pg.28]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.622 ]




SEARCH



Spatial resolution

© 2024 chempedia.info