Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preservatives/preservation, ophthalmic effectiveness testing

This aromatic alcohol has been an effective preservative and still is used in several ophthalmic products. Over the years it has proved to be a relatively safe preservative for ophthalmic products [138] and has produced minimal effects in various tests [99,136,139]. In addition to its relatively slower rate of activity, it imposes a number of limitations on the formulation and packaging. It possesses adequate stability when stored at room temperature in an acidic solution, usually about pH 5 or below. If autoclaved for 20-30 minutes at a pH of 5, it will decompose about 30%. The hydrolytic decomposition of chlorobutanol produces hydrochloric acid (HC1), resulting in a decreasing pH as a function of time. As a result, the hydrolysis rate also decreases. Chlorobutanol is generally used at a concentration of 0.5%. Its maximum water solubility is only about 0.7% at room temperature, which may be lowered by active or excipients, and is slow to dissolve. Heat can be used to increase dissolution rate but will also cause some decomposition and loss from sublimation. Concentrations as low as 0.125% have shown antimicrobial activity under the proper conditions. [Pg.434]

This preservative is comparatively new to ophthalmic preparations and is a polymeric quaternary ammonium germicide. Its advantage over other quaternary ammonium seems to be its inability to penetrate ocular tissues, especially the cornea. It has been used at concentrations of 0.001-0.01% in contact lens solutions as well as dry eye products. At clinically effective levels of preservative, POLYQUAD is approximately 10 times less toxic than benzalkonium chloride [87,137], Various in vitro tests and in vivo evaluations substantiate the safety of this compound [137,141,142], This preservative has been extremely useful for soft contact lens solutions because it has the least propensity to adsorb onto or absorb into these lenses, and it has a practically nonexistent potential for sensitization. Its ad-sorption/absorption with high water and high ionic lenses can be resolved by carefully balancing formulation components [143],... [Pg.434]


See other pages where Preservatives/preservation, ophthalmic effectiveness testing is mentioned: [Pg.431]    [Pg.8]    [Pg.160]    [Pg.8]    [Pg.431]    [Pg.463]    [Pg.120]    [Pg.478]    [Pg.480]    [Pg.718]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Ophthalmics

Preservatives testing

© 2024 chempedia.info