Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prephenate from chorismate

In this contribution, we describe work from our group in the development and application of alternatives that allow the explicit inclusion of environment effects while treating the most relevant part of the system with full quantum mechanics. The first methodology, dubbed MD/QM, was used for the study of the electronic spectrum of prephenate dianion in solution [18] and later coupled to the Effective Fragment Potential (EFP) [19] to the study of the Claisen rearrangement reaction from chorismate to prephenate catalyzed by the chorismate mutase (CM) enzyme [20]. [Pg.3]

Scheme 1-1. Transition state for the conversion of chorismate into prephenate. Also indicated are the Glu78 and Arg90 residues from chorismate mutase... Scheme 1-1. Transition state for the conversion of chorismate into prephenate. Also indicated are the Glu78 and Arg90 residues from chorismate mutase...
Figure 1-5. Free energy profile for the reaction from chorismate (RC 1.75) to prephenate (RC — 1.75), obtained using MSMD and Jarzynski s equality and pulling speeds of 2.0 A/ps (red) and 1.0 A/ps (green), and using umbrella sampling (blue)... Figure 1-5. Free energy profile for the reaction from chorismate (RC 1.75) to prephenate (RC — 1.75), obtained using MSMD and Jarzynski s equality and pulling speeds of 2.0 A/ps (red) and 1.0 A/ps (green), and using umbrella sampling (blue)...
FIGURE 22-19 Biosynthesis of phenylalanine and tyrosine from chorismate in bacteria and plants. Conversion of chorismate to prephenate is a rare biological example of a Claisen rearrangement. [Pg.851]

In plants and bacteria, phenylalanine and tyrosine are synthesized from chorismate in pathways much less complex than the tryptophan pathway. The common intermediate is prephenate (Fig. 22-19). The final step in both cases is transamination with glutamate. [Pg.851]

A thoroughly investigated reaction on the biosynthetic pathway to aromatics is the [3+3]-sigmatropic Claisen rearrangement from chorismic acid to prephenic acid (Figure 18.8). [Pg.518]

Figure 18.8 Claisen rearrangement from chorismate to prephenate catalyzed by antibodies. Figure 18.8 Claisen rearrangement from chorismate to prephenate catalyzed by antibodies.
FIGURE 3.1 The biosynthetic pathway from chorismate to L-phenylalanine in Escherichia coli K12. The mnemonic of the genes involved are shown in parentheses below the enzymes responsible for each step. Compound 1 is L-phenylalanine, 2 is chorisimic acid, 3 is prephenic acid, and 4 is phenylpyruvic acid. [Pg.33]

Figure 6 Proposed biosynthetic pathways from chorismate (37), prephenate (38), and arogenate (41) to Phe (1), Tyr (2), and Trp (43) in plants and microorganisms. ADT, arogenate dehydratase AS, anthranilate synthase CM, chorismate mutase HPPAT, p-hydroxyphenylpyruvate aminotransferase PDH, prephenate dehydrogenase PPAAT, prephenate aminotransferase PPYAT, phenylpyruvate aminotransferase. Figure 6 Proposed biosynthetic pathways from chorismate (37), prephenate (38), and arogenate (41) to Phe (1), Tyr (2), and Trp (43) in plants and microorganisms. ADT, arogenate dehydratase AS, anthranilate synthase CM, chorismate mutase HPPAT, p-hydroxyphenylpyruvate aminotransferase PDH, prephenate dehydrogenase PPAAT, prephenate aminotransferase PPYAT, phenylpyruvate aminotransferase.
Since, unlike higher eukaryotes, yeast and other lower eukaryotes have the shikimate pathway, they can synthesize Q from chorismate (4) by the prephenate (9) —> 4-hydroxyphenylpynivate pathway (10) or by the tyrosine (12) 4-hydroxyphenylpynivate pathway (10) (Figure 12), similar to those prokaryotes that lack the gene encoding CPL (the homolog of E. coli ubiC). [Pg.436]

The three aromatic amino acids that are biosynthesized in the shikimic acid pathway have much in common. The many stereochemical events occurring between the condensation of compounds 288a and 289 derived from carbohydrates to the formation of prephenic acid 296 have been extensively reviewed including a recent review by ourselves (82), and so we have summarized the stereochemistry of the biosynthesis in Scheme 79. Prephenic acid 296 leads to phenylalanine 297 and tyrosine 298. The mem-substituted amino acids 299 are derived from chorismate 295, as is tryptophan 302, as shown. [Pg.443]

The largest flux of carbon atoms from chorismate goes into the phenylala-nine/tyrosine pathway, among others leading to lignin and important groups of secondary metabolites such as flavonoids and anthocyanins. The first enzyme in that particular pathway, chorismate mutase (CM, EC 5.4.99.5), catalyzes the conversion of chorismate to prephenate (Fig. 8). Both a cytosolic and a plastidial form have been detected in several plants (e.g., 144-147). The plastidial isoform is inhibited by phenylalanine and tyrosine, and activated by tryptophan the other isoform is not affected by these... [Pg.240]

Fig. 8. From chorismate to phenylalanine and tyrosine. (PDHY = prephenate dehydratase EC 4.2.1.51 PDH = prephenate dehydrogenase EC 1.3.1.13 TAT = tyrosine aminotransferase EC 2.6.1.5 PREPAT = prephanate aminotransferase PTDH = pretyrosine dehydrogenase.)... Fig. 8. From chorismate to phenylalanine and tyrosine. (PDHY = prephenate dehydratase EC 4.2.1.51 PDH = prephenate dehydrogenase EC 1.3.1.13 TAT = tyrosine aminotransferase EC 2.6.1.5 PREPAT = prephanate aminotransferase PTDH = pretyrosine dehydrogenase.)...
Both phenylalanine and tyrosine are derived from chorismic acid, which is itself derived from shikimic acid-3-phosphate through the shikimic acid pathway. In this sequence, chorismic acid is first transformed into prephenic acid by chorismate mutase. If prephenic acid is converted into phenylpyruvic acid by... [Pg.21]

In both bacteria and plants, two additional amino acids, phenylalanine and tyrosine, are formed from chorismic acid. From chorismate, two separate routes diverge and lead to the amino acids L-phenylalanine and L-tyrosine. However, the pathways in bacteria and plants are distinct and involve different intermediates. Both of these pathways pass through the same intermediate, prephenic acid (26) (Fig. 7.9) (Floss,... [Pg.101]

Fig. 7.9. Formation of prephenic acid from chorismic acid (modified from Dewick, 1984 used with permission of the copyright owner, the Royal Society of Chemistry, London). Fig. 7.9. Formation of prephenic acid from chorismic acid (modified from Dewick, 1984 used with permission of the copyright owner, the Royal Society of Chemistry, London).
Chorismic acid is the key branch point intermediate in the biosynthesis of aromatic amino acids in microorganisms and plants (Scheme 1.1a) [1]. In the branch that leads to the production of tyrosine and phenylalanine, chorismate mutase (CM, chorismate-pyruvate mutase, EC 5.4.99.5) is a key enzyme that catalyzes the isomerization of chorismate to prephenate (Scheme 1.1b) with a rate enhancement of about lO -lO -fold. This reaction is one of few pericyclic processes in biology and provides a rare opportunity for understanding how Nature promotes such unusual transformations. The biological importance of the conversion from chorismate to prephenate and the synthetic value of the Claisen rearrangement have led to extensive experimental investigations [2-43]. [Pg.1]

The discussions given in this chapter have shown that although chorismate mutase has been a subject of extensive experimental and theoretical investigations, there are still considerable uncertainties concerning how the Claisen rearrangement from chorismate to prephenate is actually catalyzed by the enzyme. The computational investigations have led different possibilities, but experimental studies with modem techniques are necessary to identify the most likely mechanism of the CM catalysis. [Pg.20]

Amination of chorismic acid 5.10) leads through anthranilic acid 5.13) to tryptophan 5.14). The formation of phenylalanine 5.17) and tyrosine 5.18), on the other hand, proceeds via prephenic acid 5.16), whose formation from chorismic acid 5.10 = 5.15) involves... [Pg.82]

In Escherichia coli. Salmonella typhimurium and Aerobacter aerogenes two soluble multi-activity enzymes or enzyme complexes function in the utilisation of chorismate (14) for L-phenyl-alanine and L-tyrosine synthesis An enzyme or enzyme complex (P-protein) containing chorismate mutase and prephenate dehydratase activities has been isolated and partially purified from Escherichia coli. Salmonella typhimurium and Aerobacter aerogenes. The enzyme complex catalyses the transformation of chorismate (14) to phenylpyruvate (32) and both enzymic activities are retained in physical association after chromatography on DEAE cellulose. Kinetic analysis indicated that in isolated enzyme systems direct synthesis of phenylpyruvate (32) from chorismate (14) does not occur. Prephenate (31) once formed dissociates from the enzyme surface and accumulates in the reaction medium. After a lag period it is converted to phenylpyruvate (32). Schmit, Artz and Zalkin also obtained evidence to show that functionally distinct sites (catalytic and regulatory) exist on the P-protein from Salmonella typhimurium for chorismate mutase and prephenate dehydratase activities. The P-protein was obtained from Escherichia coli K-12 by Davidson, Blackburn and Dopheide who showed that it existed in solution mainly as a dimer of similar (and probably identical) sub-units of... [Pg.22]

The second branch leads from chorismic acid first to prephenic acid. After this substance the pathway forks again via phenylpyruvate to phenylalanine and via p-hydroxyphenylpyruvate to tyrosine. These two aromatic amino acids are closely related to each other since phenylalanine can be oxidized to tyrosine. However, this last reaction does not seem to be very important in higher plants. On deamination, phenylalanine yields cinnamic acid and tyrosine p-coumaric acid, a derivative of cinnamic acid. [Pg.119]

Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62). Figure 1. Schematic outline of various products and associated enzymes from the shikimate and phenolic pathways in plants (and some microorganisms). Enzymes (1) 3-deoxy-2-oxo-D-arabino-heptulosate-7-phosphate synthase (2) 5-dehydroquinate synthase (3) shikimate dehydrogenase (4) shikimate kinase (5) 5-enol-pyruvylshikimate-3-phosphate synthase (6) chorismate synthase (7) chorismate mutase (8) prephenate dehydrogenase (9) tyrosine aminotransferase (10) prephenate dehydratase (11) phenylalanine aminotransferase (12) anthranilate synthase (13) tryptophan synthase (14) phenylalanine ammonia-lyase (15) tyrosine ammonia-lyase and (16) polyphenol oxidase. (From ACS Symposium Series No. 181, 1982) (62).
Figure 1. Hypothetical mechanism for shuttling of intermediates of the common aromatic pathway between plastidic and cytosolic compartments. Enzymes denoted with an asterisk (DAHP synthase-Co, chorismate mutase-2, and cytosolic anthranilate synthase) have been demonstrated to be isozymes located in the cytosol. DAHP molecules from the cytosol are shown to be shuttled into the plastid compartment in exchange for EPSP molecules synthesized within the plastid. Abbreviations C3, phosphoenolpyruvate C4, erythrose 4-P DAHP, 3-deoxy-D-arabino-heptulosonate 7-phosphate EPSP, 5-enolpyruvylshikimate 3-phosphate CHA, chorismate ANT, anthranilate TRP, L-tryptophan PPA, prephenate AGN, L-arogenate TYR, L-tyrosine and PHE, L-phenylalanine. Figure 1. Hypothetical mechanism for shuttling of intermediates of the common aromatic pathway between plastidic and cytosolic compartments. Enzymes denoted with an asterisk (DAHP synthase-Co, chorismate mutase-2, and cytosolic anthranilate synthase) have been demonstrated to be isozymes located in the cytosol. DAHP molecules from the cytosol are shown to be shuttled into the plastid compartment in exchange for EPSP molecules synthesized within the plastid. Abbreviations C3, phosphoenolpyruvate C4, erythrose 4-P DAHP, 3-deoxy-D-arabino-heptulosonate 7-phosphate EPSP, 5-enolpyruvylshikimate 3-phosphate CHA, chorismate ANT, anthranilate TRP, L-tryptophan PPA, prephenate AGN, L-arogenate TYR, L-tyrosine and PHE, L-phenylalanine.

See other pages where Prephenate from chorismate is mentioned: [Pg.498]    [Pg.498]    [Pg.521]    [Pg.545]    [Pg.484]    [Pg.106]    [Pg.976]    [Pg.9]    [Pg.391]    [Pg.11]    [Pg.998]    [Pg.21]    [Pg.31]    [Pg.41]    [Pg.75]    [Pg.116]    [Pg.97]    [Pg.415]    [Pg.8]    [Pg.14]    [Pg.58]    [Pg.268]    [Pg.326]    [Pg.485]    [Pg.689]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Chorismate

Prephenate

© 2024 chempedia.info