Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precursor volatile organic

Instruments and methods that can in near real time characterize more fully the speciated organic composition of secondary and combustion aerosols and that of the gas phase. In conjunction with laboratory studies, one may hope to use these techniques to elucidate the pathways and connect precursor volatile organic compounds to the nature of particulate matter. [Pg.51]

Some hquid defoamers are preemulsified relatives of paste defoamers. In addition to the fatty components mentioned above, kerosene [8008-20-6] or an organic cosolvent such as 2-propanol have been used to enhance stabiUty of the oil—water emulsion and the solubiUty of the defoamer s active ingredients. These cosolvents are used less frequently as concerns increase about volatile organic emissions (VOCs) from the paper machine. Additionally, the use of ultrapure mineral oil in defoamers has become commonplace. Concern about the creation of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF) in the pulping process has led to the discovery of unchlorinated precursor molecules, especially in recycled mineral oil and other organic cosolvents used in defoamer formulations (28). In 1995 the mineral oil that is used is essentially free of dibenzodioxin and dibenzofuran. In addition, owing to both the concern about these oils and the fluctuating cost of raw materials, the trend in paper machine defoamers is toward water-based defoamers (29). [Pg.16]

Solution Deposition of Thin Films. Chemical methods of preparation may also be used for the fabrication of ceramic thin films (qv). MetaHo-organic precursors, notably metal alkoxides (see Alkoxides, metal) and metal carboxylates, are most frequently used for film preparation by sol-gel or metallo-organic decomposition (MOD) solution deposition processes (see Sol-GEL technology). These methods involve dissolution of the precursors in a mutual solvent control of solution characteristics such as viscosity and concentration, film deposition by spin-casting or dip-coating, and heat treatment to remove volatile organic species and induce crystaHhation of the as-deposited amorphous film into the desired stmcture. [Pg.346]

In 1966, the Los Angeles Air Pollution Control Board designated trichloroethylene as a photochemically reactive solvent that decomposes in the lower atmosphere, contributing to air pollution. In 1970 all states were requited to submit pollution control plans to EPA to meet national air quaUty standards. These plans, known as State Implementation Plans (SIPS), controlled trichloroethylene as a volatile organic compound (VOC). They were designed to have each state achieve the National Ambient Air QuaUty Standard (NAAQS) for ozone. The regulations were estabUshed to control the emission of precursors for ozone, of which trichloroethylene is one. [Pg.24]

Volatile organic compounds and other ozone precursors (CO... [Pg.2159]

Finally, there are also pollutants that do not cause direct health impacts hut that may have the potential to cause harm indirectly, through their actions on the overall ecology, or as they function as precursor chemicals that lead to the production of other harmful chemicals. The major indirect-action pollutants include volatile organic carbon (VOC) compounds that act as precursors to more harmful species chemicals called halocarbons and chemicals called greenhouse gases. [Pg.48]

VOC (VOCs) volatile organic com-pound(s) volatile organic compounds are regulated because they are precursors to ozone carbon-containing gases and vapors from... [Pg.340]

If handled responsibly, PFCs can be excellent choices to replace ozone-depleting compounds in many demanding, high-performance applications. Perfluorinated liquids are colorless, odorless, essentially nontoxic, and nonflammable. In addition, since they are not precursors to photochemical smog, PFCs are exempt from the U.S. EPAs volatile organic compounds (VOC) definition. Most importantly, these materials do not contain the carbon-bound chlorine or bromine, which can cause ozone depletion. [Pg.119]

Volatile organic compounds (VOCs), especially trihalomethanes, are frequently found in drinking water due to the chlorination of humic acids. When UV irradiation is applied to the pre-ozonation of humic acids, the decomposition of VOC precursors increases (Hayashi et al., 1993). The ozonation rates of compounds such as trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane, 1,2-dichloroethane, and 1,2-dichloropropane were found to be dependent on UV intensity and ozone concentration in the aqueous phase by Kusakabe et al. (1991), who reported a linear relationship between the logarithmic value of [C]/[C0] and [03]f for 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. The other two organochlorines followed the same first-order kinetics with and without UV irradiation (Kusakabe et al., 1991). Thus, the decomposition rate can be expressed as ... [Pg.310]

So what are nitrogen oxides Where does they come from And why is there a concern about the amount that enters the atmosphere Nitrogen dioxide (NO2) is a brownish, highly reactive gas that is present in all urban atmospheres. N02 can irritate the lungs, cause bronchitis and pneumonia, and lower resistance to respiratory infections. Nitrogen oxides are an important precursor both to ozone (Oj) and acid rain, and may affect both terrestrial and aquatic ecosystems. The major mechanism for the formation of NO2 in the atmosphere is the oxidation of the primary air pollutant, nitric oxide (NO). NOx plays a major role, together with VOCs (Volatile Organic Compounds), in the atmospheric... [Pg.43]


See other pages where Precursor volatile organic is mentioned: [Pg.364]    [Pg.205]    [Pg.661]    [Pg.231]    [Pg.364]    [Pg.205]    [Pg.661]    [Pg.231]    [Pg.372]    [Pg.488]    [Pg.283]    [Pg.280]    [Pg.396]    [Pg.2158]    [Pg.173]    [Pg.49]    [Pg.729]    [Pg.368]    [Pg.386]    [Pg.95]    [Pg.153]    [Pg.349]    [Pg.473]    [Pg.141]    [Pg.355]    [Pg.202]    [Pg.335]    [Pg.488]    [Pg.124]    [Pg.302]    [Pg.460]    [Pg.337]    [Pg.183]    [Pg.21]    [Pg.10]    [Pg.368]    [Pg.299]    [Pg.148]    [Pg.191]    [Pg.372]    [Pg.1914]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Organic precursors

Precursor Volatility

VOLATILE ORGANIC

Volatile precursors

Volatility organics

© 2024 chempedia.info