Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precipitation cross-linking

Poly(methyl methacrylate) and poly(vinyl acetate) precipitate from the resin solution as it cures. This mechanism offsets the contraction in volume as the polyester resin cross-links, resulting in a nonshrinking thermoset. Other polymer additives such as poly(butylene adipate) provide similar shrinkage... [Pg.322]

The age pigments (lipofuscin), which accumulate with age, aie largely made up of these precipitated Hpid-proteia complexes resultiag from such cross-linking. Vitamin E may function to help prevent formation of these complexes. The metaboHc role of antioxidants (qv) such as vitamin E in animal tissues, however, remains quite controversial. [Pg.428]

Modification of the membranes affects the properties. Cross-linking improves mechanical properties and chemical resistivity. Fixed-charge membranes are formed by incorporating polyelectrolytes into polymer solution and cross-linking after the membrane is precipitated (6), or by substituting ionic species onto the polymer chain (eg, sulfonation). Polymer grafting alters surface properties (7). Enzymes are added to react with permeable species (8—11) and reduce fouling (12,13). [Pg.294]

The heHcoidal stmcture of such Hquid crystals can be carried to the soHd state by cross-linking (119,120) or by careful evaporation of solvent (121,122). Underivatized ceUulose can also form ordered mesophases (123,124), and gel films precipitated from lithium chloride—dimethyl acetamide retain some mesophase stmcture (122). [Pg.243]

The pore size, the pore-size distribution, and the surface area of organic polymeric supports can be controlled easily during production by precipitation processes that take place during the conversion of liquid microdroplets to solid microbeads. For example, polystyrene beads produced without cross-linked agents or diluent are nonporous or contain very small pores. However, by using bigb divinylbenzene (DVB) concentrations and monomer diluents, polymer beads with wide porosities and pore sizes can be produced, depending on the proportion of DVB and monomer diluent. Control of porosity by means of monomer diluent has been extensively studied for polystyrene (3-6) and polymethacrylate (7-10). [Pg.6]

In conclusion, the self-condensation of 2-furaldehyde promoted by heat occurs with the formation of di- and trifurylic intermediates. The functionality of the growing chain increases after each oligomerization step until gelation and precipitation of the resin occurs. Thus, the process is non-linear from the onset since the condensation product 4 possesses three sites for further attack, namely the free C-5 position and the two formyl groups. It is interestering to note that while the polycondensation of 2-furfuryl alcohol is essentially linear and cross-linking is due to side reactions, the thermal resinification of 2-furaldehyde is intrinsically non-linear and gel formation occurs at earlier conversions. [Pg.56]

In addition to the insoluble polymers described above, soluble polymers, such as non-cross-linked PS and PEG have proven useful for synthetic applications. However, since synthesis on soluble supports is more difficult to automate, these polymers are not used as extensively as insoluble beads. Soluble polymers offer most of the advantages of both homogeneous-phase chemistry (lack of diffusion phenomena and easy monitoring) and solid-phase techniques (use of excess reagents and ease of isolation and purification of products). Separation of the functionalized matrix is achieved by either precipitation (solvent or heat), membrane filtration, or size-exclusion chromatography [98,99]. [Pg.87]

Linear non-cross-linked polystyrene has been used for organic synthesis since it is readily soluble in common organic solvents (i.e., dichloromethane, chloroform, tetrahydrofuran, toluene, ethyl acetate, and pyridine) but precipitates upon addition of water or methanol [123-126]. However, no examples of the use of this polymer in conjunction with microwave chemistry have been reported. [Pg.87]

In solutions, the counterions of poly electrolytes are HjO (for the polyacids) and OH (for the polybases), cations such as K+ and Na, or anions such as Cl (for the polysalts). The addition of polyvalent counterions (such as Ca, Mg, Cu, AT ) produces ionic cross-linking interfering with solubility The polyelectrolyte precipitates and may be redissolved upon addition of a strong acid (such as HCl). This can be regarded as a special case of ion exchange. [Pg.451]

The decrease in molecular weight can be explained by degradation °f the polymer samples under the reaction conditions, or by cross-linking and/or selective precipitation of the higher molecular weight... [Pg.306]

Some elucidation of the mechanism of elastomer reinforcement is being obtained by precipitating chemically-generated fillers into network structures rather than blending badly agglomerated filler particles into elastomers prior to their cross-linking. This has been done for a variety of fillers, for example, silica by hydrolysis of organosilicates, titania from titanates, alumina from aluminates, etc. [85-87], A typical, and important, reaction is the acid- or base-catalyzed hydrolysis of tetraethylorthosilicate ... [Pg.370]


See other pages where Precipitation cross-linking is mentioned: [Pg.261]    [Pg.53]    [Pg.261]    [Pg.53]    [Pg.354]    [Pg.371]    [Pg.208]    [Pg.328]    [Pg.385]    [Pg.84]    [Pg.260]    [Pg.162]    [Pg.452]    [Pg.258]    [Pg.400]    [Pg.526]    [Pg.273]    [Pg.18]    [Pg.346]    [Pg.517]    [Pg.177]    [Pg.55]    [Pg.78]    [Pg.94]    [Pg.85]    [Pg.149]    [Pg.224]    [Pg.341]    [Pg.466]    [Pg.663]    [Pg.484]    [Pg.27]    [Pg.587]    [Pg.148]    [Pg.692]    [Pg.695]    [Pg.81]    [Pg.244]    [Pg.568]    [Pg.177]    [Pg.112]    [Pg.265]   
See also in sourсe #XX -- [ Pg.453 ]

See also in sourсe #XX -- [ Pg.453 ]




SEARCH



© 2024 chempedia.info