Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential step methods diffusion controlled currents

A single DBP droplet is positioned in the vicinity of the microelectrode by the laser trapping technique, and the droplet-microelectrode (edge-to-edge) distance (L) is controlled arbitrarily in micrometer dimension. Knowing the oxidation potential of PPD in the water phase to be 30 mV, PPD is oxidized by a potential step method (100 mV) to induce the dye formation reaction. The anodic current relevant to oxidation of PPD reaches a steady-state value within a short electrolytic time (t) because of cylindrical diffusion of PPD to the microelectrode. The dye formation in the droplet can be easily confirmed by the color change from transparent to cyan or yellow. The dye formation reaction in a single microdroplet could be... [Pg.208]

The Cottrell equation is derived from Pick s second law of diffusion (Section 1.5) and predicts the variation of the current in time, when a potential step is applied under conditions of large overpotential. For this equation to be valid the current must be limited by diffusion of the analyte to the electrode surface, and thus the solution has to be unstirred. The overpotential at which the reaction is driven must be large enough to ensure the rapid depletion of the electroactive species (O) at the electrode surface, such that the process would be controlled by the diffusion to the electrode. This equation is most often applied to potential step methods (e.g., chronoamperometry see Chapter 11) ... [Pg.10]

However, when one gets down to detailed quantitative equations to represent real, actual reactions with several steps in consecutive sequence, the mathematics become very complex. Thus, the change in the limiting current with time introduces complications that one tries to avoid in other transient methods by working at low times (constant current or constant potential approaches) or at times sufficiently high that the current becomes entirely diffusion controlled. However, taking into account the... [Pg.714]

The important concept in these dynamic electrochemical methods is diffusion-controlled oxidation or reduction. Consider a planar electrode that is immersed in a quiescent solution containing O as the only electroactive species. This situation is illustrated in Figure 3.1 A, where the vertical axis represents concentration and the horizontal axis represents distance from the electrodesolution interface. This interface or boundary between electrode and solution is indicated by the vertical line. The dashed line is the initial concentration of O, which is homogeneous in the solution the initial concentration of R is zero. The excitation function that is impressed across the electrode-solution interface consists of a potential step from an initial value E , at which there is no current due to a redox process, to a second potential Es, as shown in Figure 3.2. The value of this second potential is such that essentially all of O at the electrode surface is instantly reduced to R as in the generalized system of Reaction 3.1 ... [Pg.52]

Double-potential step chronoamperometry This method was proposed in 1965 by Schwarz and Shain [18] for the investigation of follow-up reactions especially for the mechanism. During the first potential pulse the product B is produced at a stationary electrode under diffusion-controlled conditions for a timed interval tp. During this interval substance B diffuses into the solution and simultaneously undergoes a chemical reaction. Then, the potential is suddenly switched to a value where B is converted back into A. The backward current indicates the amount of B which has not reacted and can be related to the rate constant kf. The forward current-time dependence is given by the Cottrell equation... [Pg.205]


See other pages where Potential step methods diffusion controlled currents is mentioned: [Pg.297]    [Pg.538]    [Pg.99]    [Pg.297]    [Pg.527]    [Pg.528]    [Pg.96]    [Pg.222]    [Pg.544]    [Pg.297]    [Pg.325]    [Pg.536]    [Pg.284]    [Pg.649]    [Pg.578]    [Pg.700]    [Pg.71]    [Pg.31]    [Pg.836]    [Pg.28]    [Pg.161]    [Pg.87]    [Pg.66]    [Pg.559]   


SEARCH



Control methods

Controlled current methods,

Controlled potential

Controlled potential methods

Controlled-current

Current methods

Current step

Current-step method

Diffusion control

Diffusion control, potential step methods

Diffusion controlled

Diffusion controlled currents methods

Diffusion controlled currents step methods

Diffusion current

Diffusion-controlled current

Potential control

Potential diffusion

Potential step

Potential step methods

Step diffusion

Step methods

© 2024 chempedia.info