Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porphyrin decomposition

Porphyria, the disease from which Britain s King George III is believed to have suffered, arises through the accumulation of porphyrin decomposition products in the skin due to impaired enzyme function in the haem biosynthetic pathway [5], In addition to many other unpleasant side effects, porphyria renders the individual highly sensitive to light. The effects of porphyria, if they could be controlled and directed towards particular diseased tissue, would have the potential as a powerful therapeutic method. As the mechanism involves local, light-initiated generation of... [Pg.211]

The introduction of chlorinated porphyrins (10) allowed for hydrogen peroxide to be used as terminal oxidant [62], These catalysts, discovered by Mansuy and coworkers, were demonstrated to resist decomposition, and efficient epoxidations of olefins were achieved when they were used together with imidazole or imidazo-lium carboxylates as additives, (Table 6.6, Entries 1 and 2). [Pg.201]

Iron(II) alkyl anions fFe(Por)R (R = Me, t-Bu) do not insert CO directly, but do upon one-electron oxidation to Fe(Por)R to give the acyl species Fe(Por)C(0)R, which can in turn be reduced to the iron(II) acyl Fe(Por)C(0)R]. This process competes with homolysis of Fe(Por)R, and the resulting iron(II) porphyrin is stabilized by formation of the carbonyl complex Fe(Por)(CO). Benzyl and phenyl iron(III) complexes do not insert CO, with the former undergoing decomposition and the latter forming a six-coordinate adduct, [Fe(Por)(Ph)(CO) upon reduction to iron(ll). The failure of Fe(Por)Ph to insert CO was attributed to the stronger Fe—C bond in the aryl complexes. The electrochemistry of the iron(lll) acyl complexes Fe(Por)C(0)R was investigated as part of this study, and showed two reversible reductions (to Fe(ll) and Fe(l) acyl complexes, formally) and one irreversible oxidation process."" ... [Pg.258]

The most significant and widely studied reactivity of the ruthenium and osmium porphyrin carbene complexes is their role in catalyzing both the decomposition of diazoesters to produce alkenes and the cyclopropanation of alkenes by diazoesters. Ethyl diazoacetate is used to prepare the carbene complex 0s(TTP)(=CHC02Et)... [Pg.276]

Decomposition of diazo compounds by iron porphyrins is a convenient method for the synthesis of non-heteroatom carbene-iron porphyrins [22]. Reaction of [Fe(F2o-TPP)] [F20-TPP = meso-tetrakis(pentafluorophenyl)porphyrinato dianion] with diazo compounds N2C(Ph)R (R = Ph, C02Et, C02CH2CH=CH2) under an inert atmosphere afforded complexes [Fe(F2o-TPP)C(Ph)R] in 65-70% yields (Scheme 2). Like the halocarbene complex [Fe(TPP)(CCl2)], [Fe(F2o-TPP)CPh2] reacted with Melm to afford six-coordinate species [(MeIm)Fe(F2o-TPP)CPh2] in 65% isolated yield. [Pg.114]

The most important undesired metallic impurities are nickel and vanadium, present in porphyrinic structures that originate from plants and are predominantly found in the heavy residues. In addition, iron may be present due to corrosion in storage tanks. These metals deposit on catalysts and give rise to enhanced carbon deposition (nickel in particular). Vanadium has a deleterious effect on the lattice structure of zeolites used in fluid catalytic cracking. A host of other elements may also be present. Hydrodemetallization is strictly speaking not a catalytic process, because the metallic elements remain in the form of sulfides on the catalyst. Decomposition of the porphyrinic structures is a relatively rapid reaction and as a result it occurs mainly in the front end of the catalyst bed, and at the outside of the catalyst particles. [Pg.355]

The organic structures holding the ions, porphyrins, are themselves quite resistant to decomposition. They are not open to hydrolytic attack but note that they are sensitive to oxidation. [Pg.216]

Similar to the intramolecular insertion into an unactivated C—H bond, the intermolecular version of this reaction meets with greatly improved yields when rhodium carbenes are involved. For the insertion of an alkoxycarbonylcarbene fragment into C—H bonds of acyclic alkanes and cycloalkanes, rhodium(II) perfluorocarb-oxylates 286), rhodium(II) pivalate or some other carboxylates 287,288 and rhodium-(III) porphyrins 287 > proved to be well suited (Tables 19 and 20). In the era of copper catalysts, this reaction type ranked as a quite uncommon process 14), mainly because the yields were low, even in the absence of other functional groups in the substrate which would be more susceptible to carbenoid attack. For example, CuS04(CuCl)-catalyzed decomposition of ethyl diazoacetate in a large excess of cyclohexane was reported to give 24% (15%) of C/H insertion, but 40% (61 %) of the two carbene dimers 289). [Pg.198]

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

As to the origins of the major N compounds identified, it is possible that at least a portion of some of these compounds are pyrolysis products of amino acids, peptides, proteins, [18] and porphyrins (a component of chlorophyll), [19] or originate from the microbial decomposition of plant lignins and other phenolics in the presence of ammonia. [20] Of considerable interest are the identifications aromatic and aliphatic nitriles. Nitriles can be formed from amines with the loss of 2 H2, from amides with the loss of H20, and also by reacting n-alkanoic acid with NH3. [21] The detection of long-chain alkyl- and dialkyl-nitriles points to the presence in the soil or SOM of long-chain amines... [Pg.125]

Example The FD spectrum of a ruthenium-carbonyl-porphyrin complex shows an isotopic pattern very close to the theoretical distribution (Chap. 3.2.8). The loss of the carbonyl ligand chiefly results from thermal decomposition. A spectmm accumulated close to BAT (scans 19-25, EHC = 25-30 mA) is nearly free from CO loss while a spectrum accumulated of scans 30-36 (35 0 mA)... [Pg.372]

It is essential to characterize the reactant species in solution. One of the problems, for example, in interpreting the rate law for oxidation by Ce(IV) or Co(III) arises from the difficulties in characterizing these species in aqueous solution, particularly the extent of formation of hydroxy or polymeric species. We used the catalyzed decomposition of HjOj by an Fe(III) macrocycle as an example of the initial rate approach (Sec. 1.2.1). With certain conditions, the iron complex dimerizes and this would have to be allowed for, since it transpires that the dimer is catalytically inactive. In a different approach, the problems of limited solubility, dimerization and aging of iron(III) and (Il)-hemin in aqueous solution can be avoided by intercalating the porphyrin in a micelle. Kinetic study is then eased. [Pg.131]


See other pages where Porphyrin decomposition is mentioned: [Pg.5]    [Pg.164]    [Pg.5]    [Pg.164]    [Pg.739]    [Pg.691]    [Pg.201]    [Pg.219]    [Pg.70]    [Pg.256]    [Pg.271]    [Pg.295]    [Pg.99]    [Pg.101]    [Pg.124]    [Pg.651]    [Pg.653]    [Pg.668]    [Pg.1118]    [Pg.150]    [Pg.319]    [Pg.224]    [Pg.342]    [Pg.371]    [Pg.234]    [Pg.25]    [Pg.17]    [Pg.707]    [Pg.125]    [Pg.347]    [Pg.558]    [Pg.465]    [Pg.307]    [Pg.74]    [Pg.66]    [Pg.71]    [Pg.313]    [Pg.327]    [Pg.9]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



© 2024 chempedia.info