Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites pore size classification

Zeolites can be classified in many ways. Two convenient methods are on the basis of pore size and chemical composition, that is, the Si/Al ratio. The pore diameter is determined by the size of the free apertures in the structure, which is dependent on the number of T atoms (T = Si or Al) that form the aperture. Table 10.1 summarizes some examples of zeolites based on pore size classification. It should be noted that the values typically reported in the literature are determined by crystallographic studies. While these numbers are good guides, it is important to note that the actual pore size depends on many factors, including temperature, firamework composition, and the type of extra-framework cations present in the zeolite. These factors can lead to subtle changes in effective pore sizes and subsequently large changes in material properties (adsorption/reactivity). [Pg.334]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]

Post-synthesis methods (pore-size engineering) allow an existing shape-selectivity effect to be intensified, and also a new one to be established. However, normally not only the pore size will be influenced by most of these methods, but also the catalytic activity. Vansant [104] gives a classification of post-synthesis modification methods which covers the entire range of zeolite applications (gas separation, gas purification, encapsulation of gases and catalysis). [Pg.366]

Molecular sieve catalysts that have been used for the conversion of methanol to hydrocarbons fall into two general classifications. Most of the initial research was done using ZSM-5 (MFI), a medium-pore size zeolite with a three dimensional pore system consisting of straight (5.6 x 5.3 A) and sinusoidal channels (5.5 x 5.1 A). While most of this work was directed at the conversion of methanol to liquid hydrocarbons for addition to gasoline, it was found that the product slate could be shifted toward light olefins by the use of low pressure and short contact times. [Pg.243]

Until now we have mainly treated adsorption onto non-porous surfaces. In reality, most industrial and many natural materials are porous Textiles, paper, bricks, sand, porous rocks, food products, zeolites etc. We start our discussion with a classification of pores according to their size, which is recommended by IUPAC ... [Pg.199]

TABLE 10.1 Classification of Zeolites Based on Size of Pore Opening Ring... [Pg.334]


See other pages where Zeolites pore size classification is mentioned: [Pg.595]    [Pg.561]    [Pg.270]    [Pg.119]    [Pg.252]    [Pg.946]    [Pg.252]    [Pg.66]    [Pg.64]    [Pg.474]    [Pg.1825]    [Pg.391]   
See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Pore size

Pores classification

Size classification

Zeolite pores

© 2024 chempedia.info