Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polythiophenes properties

Polythiophene can be synthesized by electrochemical polymerization or chemical oxidation of the monomer. A large number of substituted polythiophenes have been prepared, with the properties of the polymer depending on the nature of the substituent group. Oligomers of polythiophene such as (a-sexithienyl thiophene) can be prepared by oxidative linking of smaller thiophene units (33). These oligomers can be sublimed in vacuum to create polymer thin films for use in organic-based transistors. [Pg.242]

AppHcations of polythiophenes being considered utilize either the electrical properties of the doped conducting state with either anionic or cationic... [Pg.23]

The development of polythiophenes since the early 1980s has been extensive. Processible conducting polymers are available and monomer derivathation has extended the range of electronic and electrochemical properties associated with such materials. Problem areas include the need for improved conductivity by monomer manipulation, involving more extensive research using stmcture—activity relationships, and improved synthetic methods for monomers and polymers alike, which are needed to bring the attractive properties of polythiophenes to fmition on the commercial scale. [Pg.24]

Polythiophene [78] is a promising material for certain future electronic applications, due to its relatively high stability and processability in the substituted form [79-81]. Upon substitution, with e.g. alkyl side-chains [79, 80], polythiophene exhibit properties such as solvalochromism [82] and thermochromism [83]. Presently, a large variety of substituted polythiophenes with various band gaps exists (for example see Ref. [81 ]). [Pg.80]

Several attempts to use otganic polymeric semiconductors as the active component in photovoltaic devices have been reported during the last two decades. Interest in the photovoltaic properties of conjugated polymers like polyacelylcne, various derivatives of polythiophenes and poly(para-phenylene vinylene)s arose from... [Pg.271]

The photovoltaic properties of PPV and PPV based soluble polymers have been quantitatively confirmed also for polythiophenes. The IN characteristics of ITO/ P30T/Au [60] and of ITO/P3HT/Au [61] diodes showed excellent rectification behavior and a high photosensitivity under reversed bias. [Pg.278]

Here we introduce a personal point of view about the interactions between conducting polymers and electrochemistry their synthesis, electrochemical properties, and electrochemical applications. Conducting polymers are new materials that were developed in the late 1970s as intrinsically electronic conductors at the molecular level. Ideal monodimensional chains of poly acetylene, polypyrrole, polythiophene, etc. can be seen in Fig. 1. One of the most fascinating aspects of these polymeric... [Pg.308]

Polythiophene electrogeneration on a rotating disc electrode. The water content influence on polymerization and on the polymeric properties. J. Electroanal Chem., 310, 219, 1991, Fig. 9. Copyright 1991. Reprinted with permission of Elsevier Science.)... [Pg.327]

Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)... Figure 5. Cyclic voltammograms of (a) 2,5"" -di-methyl-a-hexathiophene and (b) poly(2,2 -bithio-phene) films in acetonitrile containing 0.1 M E NCIO 103 (Reprinted from G. Zotti, G. Schia-von, A. Berlin, and G. Pagani, Electrochemistry of end-ca )ed oligothienyls-new insights into the polymerization mechanism and the charge storage, conduction and capacitive properties of polythiophene, Synth. Met. 61 (1-2) 81-87, 1993, with kind permission from Elsevier Science S.A.)...
Besides synthesis, current basic research on conducting polymers is concentrated on structural analysis. Structural parameters — e.g. regularity and homogeneity of chain structures, but also chain length — play an important role in our understanding of the properties of such materials. Research on electropolymerized polymers has concentrated on polypyrrole and polythiophene in particular and, more recently, on polyaniline as well, while of the chemically produced materials polyacetylene stih attracts greatest interest. Spectroscopic methods have proved particularly suitable for characterizing structural properties These comprise surface techniques such as XPS, AES or ATR, on the one hand, and the usual methods of structural analysis, such as NMR, ESR and X-ray diffraction techniques, on the other hand. [Pg.16]

Polymers with n-conjugated backbones are an important class of materials that have captured the imagination of the scientific community due to their remarkable properties and exciting applications [91-95]. While most of the work on n-conjugated polymers has focused on all-carbon systems, there has been considerable interest in incorporating heteroatoms into the n-conjugated backbone (i.e.,polythiophene, polypyrrole, polyaniline) to tune their properties. [Pg.119]

Related Polymer Systems and Synthetic Methods. Figure 12A shows a hypothetical synthesis of poly (p-phenylene methide) (PPM) from polybenzyl by redox-induced elimination. In principle, it should be possible to accomplish this experimentally under similar chemical and electrochemical redox conditions as those used here for the related polythiophenes. The electronic properties of PPM have recently been theoretically calculated by Boudreaux et al (16), including bandgap (1.17 eV) bandwidth (0.44 eV) ionization potential (4.2 eV) electron affinity (3.03 eV) oxidation potential (-0.20 vs SCE) reduction potential (-1.37 eV vs SCE). PPM has recently been synthesized and doped to a semiconductor (24). [Pg.453]

As might be expected, the properties of polythiophene show many similarities with those of polypyrrole. As with polypyrrole, polythiophene can be prepared via other routes than electrochemical oxidation both as the neutral material [390-392] or in the p-doped form [393]. This material is produced as an infusible black powder which is insoluble in common solvents (and stable in air up to 360°C), with conductivities ranging from approximately 10 11 Scm-1 in the neutral form [390] to 102 Scm-1 when doped [19, 393, 394]. Early work on thiophene polymers showed that the p-doped material is air-sensitive in that the conductivity decreases on exposure to the atmosphere [20, 395] although no evidence of oxygen-containing species was seen in XPS measurements [19],... [Pg.51]

Many substituted thiophenes have also been electrochemically polymerised [19,54,399-405] (Table 4) as have thiophene dimers [21,37,55,251,400,406], trimers [21, 83,407], and tetramers [256,406], with the thiophene dimer giving rise to higher quality films than does the monomer [37, 395,408]. Several polycyclic monomers including a thiophene ring have also been polymerised [408-416], as have a series of compounds consisting of two thiophene rings linked by a polyene chain (Fig. 23c). The polymerisation of dithieno-thiophene (Fig. 23d) results in a polymer which shows remarkable similarity to polythiophene in its properties [409,410,414],... [Pg.51]

The synthesis of poly(isothianapthene) (PITN) is an example of the second generation of conducting polymers, which have been prepared in order to produce a material with specific properties. Given the two inequivalent structures of polythiophene which give... [Pg.60]

Synthesis and Electrochemical Properties of a Polythiophene—Viologen Polymer... [Pg.408]

In this article we report the synthesis and electrochemical properties of the polymer derived from oxidation of X, poly(I), and the characteristics of a microelectrochemical transistor based on the polymer. Poly(I), which is formed by electrochemical oxidation of X, Equation 1, consists of a conducting polymer backbone, polythiophene. [Pg.409]


See other pages where Polythiophenes properties is mentioned: [Pg.362]    [Pg.362]    [Pg.41]    [Pg.56]    [Pg.244]    [Pg.295]    [Pg.582]    [Pg.472]    [Pg.336]    [Pg.591]    [Pg.2]    [Pg.6]    [Pg.164]    [Pg.195]    [Pg.338]    [Pg.55]    [Pg.27]    [Pg.582]    [Pg.333]    [Pg.126]    [Pg.765]    [Pg.211]    [Pg.563]    [Pg.408]    [Pg.409]    [Pg.411]    [Pg.413]   
See also in sourсe #XX -- [ Pg.216 , Pg.217 , Pg.218 , Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 ]




SEARCH



Polythiophen

Polythiophene

Polythiophenes

© 2024 chempedia.info