Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene conductivity

Polystyrene -Conductive High Impact Conductive Polystyrene 1.04 —... [Pg.79]

Fig. 3. Aging effect on thermal conductivity of cellular plastics A, extmded polystyrene B, unfaced polyurethane C, unfaced phenolic and D, polyurethane... Fig. 3. Aging effect on thermal conductivity of cellular plastics A, extmded polystyrene B, unfaced polyurethane C, unfaced phenolic and D, polyurethane...
Polyurethane. Polyurethanes (pu) are predominantly thermosets. The preparation processes for polyurethane foams have several steps (see Urethane polymers) and many variations that lead to products of widely differing properties. Polyurethane foams can have quite low thermal conductivity values, among the lowest of all types of thermal insulation, and have replaced polystyrene and glass fiber as insulation in refrigeration. The sprayed-on foam can be appHed to walls, roofs, tanks, and pipes, and between walls or surfacing materials directly. The slabs can be used as insulation in the usual ways. [Pg.328]

We have conducted the comparative study of gold (III), platinum (IV) and palladium (II) acidocomplexes solution on macroporous granular sorbents on the basis of polystyrene with functional groups of methyleneamine, 3-methylpyrasolyl, N,N-dimethylaminomethylene, dimethylmethylene-P-oxyethylamine and with functional 6-(3-methylpyridine) groups on polyvinylpyridine basis as well as fibrous polystyrene sorbent with pyrazolyl groups. [Pg.262]

Continuous mass polymerisation units are extensively used for making polystyrene. Great care is necessary to prevent the heat of reaction accelerating the polymerisation to such an extent that the reaction gets out of control. The problem is made particularly difficult by the fact that heat can only be taken away from the points of higher temperature by conduction because of the very high... [Pg.429]

For materials of equivalent density water-blown polyurethanes and the hydrocarbon-blown polystyrene foams have similar thermal conductivities. This is because the controlling factor determining the conductivity is the nature of the gas present in the cavities. In both of the above cases air, to all intents and purposes, normally replaces any residual blowing gas either during manufacture or soon after. Polyurethane foams produced using fluorocarbons have a lower thermal conductivity (0.12-0.15 Btu in fr h °F ) (0.017-0.022 W/mK) because of the lower conductivity of the gas. The comparative thermal conductivities for air, carbon dioxide and monofluorotrichloromethane are given in Table 27.3. [Pg.802]

Except where the foam is surrounded by a skin of relatively impermeable material, it would be expected that the blowing gas would diffuse out and be replaced by air and that the thermal conductivities of the foams would increase until they approached that of expanded polystyrene of similar density. Whilst this... [Pg.802]

Let us first assume that we have a spherical particle with a radius of 5 p.m similar to an idealized toner particle, which is comprised of polystyrene, in contact with an electrically conducting substrate. A typical electric charge on a toner particle of that size is of the order of 10" " C. The Hamaker coefficient (Eq. 15) for such as system would be about 1.5 eV. [Pg.175]

All this being said, perhaps the most definitive study of the relative roles of electrostatic and van der Waals forces was performed by Gady et al. [86,101,102]. In their studies, they attached a spherical polystyrene particle, having a radius between 3 and 6 p.m, to the cantilever of an atomic force microscope. They then conducted three distinct measurements that allowed them to distinguish between electrostatic and van der Waals forces that attracted the particle to various conducting, smooth substrates. [Pg.176]

The adaptation of the Bischler-Napieralski reaction to solid-phase synthesis has been described independently by two different groups. Meutermans reported the transformation of Merrifield resin-bound phenylalanine derivatives 32 to dihydroisoquinolines 33 in the presence of POCI3. The products 34 were liberated from the support using mixtures of HF/p-cresol. In contrast, Kunzer conducted solid-phase Bischler-Napieralski reactions on a 2-hydroxyethyl polystyrene support using the aromatic ring of the substrate 35 as a point of attachment to the resin. The cyclized products 36 were cleaved from the support by reaction with i-butylamine or n-pentylamine to afford 37. [Pg.380]

The polymerization reaction is conducted at the desired temperature with a slow stirring regime for a certain period. A typical recipe for the emulsion polymerization of styrene is exemplified in Table 1 [40]. As seen here, potassium persulfate and sodium dodecyl sulfate were used as the initiator and the stabilizer, respectively. This recipe provides uniform polystyrene particles 0.22 /Lim in size. [Pg.193]

Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation. Figures 12-12 and 12-13 document that trap-free SCL-conduction can, in fact, also be observed in the case of electron transport. Data in Figure 12-12 were obtained for a single layer of polystyrene with a CF -substituted vinylquateiphenyl chain copolymer, sandwiched between an ITO anode and a calcium cathode and given that oxidation and reduction potentials of the material majority curriers can only be electrons. Data analysis in terms of Eq. (12.5) yields an electron mobility of 8xl0 ycm2 V 1 s . The rather low value is due to the dilution of the charge carrying moiety. The obvious reason why in this case no trap-limited SCL conduction is observed is that the ClVquatciphenyl. substituent is not susceptible to chemical oxidation.
The polystyrene derivatives with pendant oligo(oxyethylene)cyclotriphos-phazenes VIII and IX were synthesized by Inoue [614,615] and the ionic conductivity of their complexes with LiCL04 investigated. The maximum ionic conductivity obtained for these complexes are reported in Table 15. [Pg.208]

The authors explain these high conductivities by an ion transport through a conducting phase consisting of a number of oxyethylene chains. Being obtained from polystyrene derivatives, these values also indicate that the flexibility of the backbone is not essential to achieve a high conductivity. [Pg.208]

Table 15 Maximum conductivity of the polystyrene derivatives VIII, IX/LiCl04 systems... Table 15 Maximum conductivity of the polystyrene derivatives VIII, IX/LiCl04 systems...
In the systems with polystyrene derivatives VIII, IX and multi-armed cyclotriphosphazenes XI, XII the conductivity seems to be dependent on the relative concentrations of inter- and intra-molecular complexes (Table 17). [Pg.210]

Hollow and porous polymer capsules of micrometer size have been fabricated by using emulsion polymerization or through interfacial polymerization strategies [79,83-84, 88-90], Micron-size, hollow cross-linked polymer capsules were prepared by suspension polymerization of emulsion droplets with polystyrene dissolved in an aqueous solution of poly(vinyl alcohol) [88], while latex capsules with a multihollow structure were processed by seeded emulsion polymerization [89], Ceramic hollow capsules have also been prepared by emulsion/phase-separation procedures [14,91-96] For example, hollow silica capsules with diameters of 1-100 micrometers were obtained by interfacial reactions conducted in oil/water emulsions [91],... [Pg.515]


See other pages where Polystyrene conductivity is mentioned: [Pg.102]    [Pg.102]    [Pg.415]    [Pg.416]    [Pg.333]    [Pg.335]    [Pg.52]    [Pg.332]    [Pg.231]    [Pg.39]    [Pg.430]    [Pg.434]    [Pg.463]    [Pg.463]    [Pg.803]    [Pg.450]    [Pg.342]    [Pg.221]    [Pg.675]    [Pg.217]    [Pg.514]    [Pg.132]    [Pg.111]    [Pg.361]    [Pg.589]    [Pg.118]    [Pg.118]    [Pg.86]    [Pg.582]    [Pg.506]    [Pg.529]    [Pg.766]    [Pg.166]    [Pg.343]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.1191 ]




SEARCH



© 2024 chempedia.info