Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypeptides hydrogen bond between

Section 27 19 Two secondary structures of proteins are particularly prominent The pleated sheet is stabilized by hydrogen bonds between N—H and C=0 groups of adjacent chains The a helix is stabilized by hydrogen bonds within a single polypeptide chain... [Pg.1152]

Fig. 2. Protein secondary stmcture (a) the right-handed a-helix, stabilized by intrasegmental hydrogen-bonding between the backbone CO of residue i and the NH of residue t + 4 along the polypeptide chain. Each turn of the helix requires 3.6 residues. Translation along the hehcal axis is 0.15 nm per residue, or 0.54 nm per turn and (b) the -pleated sheet where the polypeptide is in an extended conformation and backbone hydrogen-bonding occurs between residues on adjacent strands. Here, the backbone CO and NH atoms are in the plane of the page and the amino acid side chains extend from C ... Fig. 2. Protein secondary stmcture (a) the right-handed a-helix, stabilized by intrasegmental hydrogen-bonding between the backbone CO of residue i and the NH of residue t + 4 along the polypeptide chain. Each turn of the helix requires 3.6 residues. Translation along the hehcal axis is 0.15 nm per residue, or 0.54 nm per turn and (b) the -pleated sheet where the polypeptide is in an extended conformation and backbone hydrogen-bonding occurs between residues on adjacent strands. Here, the backbone CO and NH atoms are in the plane of the page and the amino acid side chains extend from C ...
Figure 11.14 Schematic diagram of the active site of subtilisin. A region (residues 42-45) of a bound polypeptide inhibitor, eglin, is shown in red. The four essential features of the active site— the catalytic triad, the oxyanion hole, the specificity pocket, and the region for nonspecific binding of substrate—are highlighted in yellow. Important hydrogen bonds between enzyme and inhibitor are striped. This figure should be compared to Figure 11.9, which shows the same features for chymotrypsin. (Adapted from W. Bode et al., EMBO /. Figure 11.14 Schematic diagram of the active site of subtilisin. A region (residues 42-45) of a bound polypeptide inhibitor, eglin, is shown in red. The four essential features of the active site— the catalytic triad, the oxyanion hole, the specificity pocket, and the region for nonspecific binding of substrate—are highlighted in yellow. Important hydrogen bonds between enzyme and inhibitor are striped. This figure should be compared to Figure 11.9, which shows the same features for chymotrypsin. (Adapted from W. Bode et al., EMBO /.
FIGURE 5.8 Two structural motifs that arrange the primary structure of proteins into a higher level of organization predominate in proteins the a-helix and the /3-pleated strand. Atomic representations of these secondary structures are shown here, along with the symbols used by structural chemists to represent them the flat, helical ribbon for the a-helix and the flat, wide arrow for /3-structures. Both of these structures owe their stability to the formation of hydrogen bonds between N—H and 0=C functions along the polypeptide backbone (see Chapter 6). [Pg.117]

The secondary structure of a protein is the shape adopted by the polypeptide chain—in particular, how it coils or forms sheets. The order of the amino acids in the chain controls the secondary structure, because their intermolecular forces hold the chains together. The most common secondary structure in animal proteins is the a helix, a helical conformation of a polypeptide chain held in place by hydrogen bonds between residues (Fig. 19.19). One alternative secondary structure is the P sheet, which is characteristic of the protein that we know as silk. In silk, protein... [Pg.890]

Collagen triple helices are stabilized by hydrogen bonds between residues in dijferent polypeptide chains. The hydroxyl groups of hydroxyprolyl residues also participate in interchain hydrogen bonding. Additional stability is provided by covalent cross-links formed between modified lysyl residues both within and between polypeptide chains. [Pg.38]

The p-pleated sheet structure occurs in fibrous as well as globular proteins and is formed by intermolecular hydrogen bonds between a carboxyl group oxygen of one amino acid and an amine hydrogen of an adjacent polypeptide chain. Parallel p-pleated sheets form when the adjacent polypeptide chains are oriented in one direction (from N-terminal to C-terminal end or vice versa). Antiparallel p-pleated... [Pg.29]

Figure 11.2 The secondary structure of proteins. The simplest spatial arrangement of amino acids in a polypeptide chain is as a fully extended chain (a) which has a regular backbone structure due to the bond angles involved and from which the additional atoms, H and O, and the amino acid residues, R, project at varying angles. The helical form (b) is stabilized by hydrogen bonds between the —NH group of one peptide bond and the —CO group of another peptide bond. The amino acid residues project from the helix rather than internally into the helix. Figure 11.2 The secondary structure of proteins. The simplest spatial arrangement of amino acids in a polypeptide chain is as a fully extended chain (a) which has a regular backbone structure due to the bond angles involved and from which the additional atoms, H and O, and the amino acid residues, R, project at varying angles. The helical form (b) is stabilized by hydrogen bonds between the —NH group of one peptide bond and the —CO group of another peptide bond. The amino acid residues project from the helix rather than internally into the helix.
Figure 11.4 Pleated sheets of fibrous proteins. Parallel pleated sheets are composed of polypeptide chains which all have their N-terminal amino acid at the same end whereas anti-parallel pleated sheets involve polypeptide chains which are alternately reversed in direction. Both forms of sheet show a high degree of hydrogen bonding between the chains. Figure 11.4 Pleated sheets of fibrous proteins. Parallel pleated sheets are composed of polypeptide chains which all have their N-terminal amino acid at the same end whereas anti-parallel pleated sheets involve polypeptide chains which are alternately reversed in direction. Both forms of sheet show a high degree of hydrogen bonding between the chains.
Noncovalent interactions play a key role in biodisciplines. A celebrated example is the secondary structure of proteins. The 20 natural amino acids are each characterized by different structures with more or less acidic or basic, hydrophilic or hydrophobic functionalities and thus capable of different intermolecular interactions. Due to the formation of hydrogen bonds between nearby C=0 and N-H groups, protein polypeptide backbones can be twisted into a-helixes, even in the gas phase in the absence of any solvent." A protein function is determined more directly by its three-dimensional structure and dynamics than by its sequence of amino acids. Three-dimensional structures are strongly influenced by weak non-covalent interactions between side functionalities, but the central importance of these weak interactions is by no means limited to structural effects. Life relies on biological specificity, which arises from the fact that individual biomolecules communicate through non-covalent interactions." " Molecular and chiral recognition rely on... [Pg.152]

P-Sbeet structures are made from bigbly extended polypeptide chains that link together by hydrogen bonds between the neighboring strands and can be oriented in parallel or antiparallel arrays (Figure 2-2). [Pg.11]

Correct answer = C. p-Bends often contain pro line, which provides a kink. The a-helix differs from the p-sheet in that it always involves the coiling of a single polypeptide chain. The P-sheet occurs in both parallel and antiparallel forms. Motifs are elements of tertiary structure. The a-helix is stabilized primarily by hydrogen bonds between the -C=0 and -NH- groups of peptide bonds. [Pg.24]

Spin-lattice relaxation times and 13C chemical shifts were used to study conformational changes of poly-L-lysine, which undergoes a coil-helix transition in a pH range from 9 to 11. In order to adopt a stable helical structure, a minimum number of residues for the formation of hydrogen bonds between the C = 0 and NH backbone groups is necessary therefore for the polypeptide dodecalysine no helix formation was observed. Comparison of the pH-dependences of the 13C chemical shifts of the carbons of poly-L-lysine and (L-Lys)12 shows very similar values for both compounds therefore downfield shifts of the a, / and peptide carbonyl carbons can only be correlated with caution with helix formation and are mainly due to deprotonation effects. On the other hand, a sharp decrease of the 7] values of the carbonyl and some of the side chain carbons is indicative for helix formation [854]. [Pg.437]

The p pleated sheet structure occurs commonly in insoluble structural proteins and only to a limited extent in soluble proteins. It is characterised by hydrogen-bonding between polypeptide chains lying side by side, as illustrated in Fig. 5.A3b. [Pg.413]


See other pages where Polypeptides hydrogen bond between is mentioned: [Pg.65]    [Pg.205]    [Pg.210]    [Pg.161]    [Pg.286]    [Pg.286]    [Pg.253]    [Pg.13]    [Pg.32]    [Pg.133]    [Pg.31]    [Pg.643]    [Pg.5]    [Pg.49]    [Pg.51]    [Pg.471]    [Pg.283]    [Pg.18]    [Pg.35]    [Pg.414]    [Pg.136]    [Pg.509]    [Pg.159]    [Pg.598]    [Pg.231]    [Pg.115]    [Pg.129]    [Pg.16]    [Pg.28]    [Pg.447]    [Pg.450]    [Pg.68]    [Pg.205]    [Pg.210]    [Pg.148]   


SEARCH



Hydrogen between

Hydrogen bonding, between

Hydrogen bonds between

Polypeptides bonding

Polypeptides hydrogen bonding

© 2024 chempedia.info