Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers ABS type

Monofunctional Iniferter R-X > R-tMJj-X End-functional polymer, AB-type block copolymer... [Pg.82]

As reported by Kanca and co-workers, the enantioselective transesterification polycondensation of racemic AB-type monomers containing a secondary hydroxy group and a methyl ester moiety led to chiral polyesters by iterative tandem catalysis. The concurrent actions of an enantioselective acylation catalyst (such as CALB) and a racemisation catalyst (Ru(Shvo)) resulted in the high conversion of the racemic monomers to enantioenriched polymers. AB-type monomers used were typically methyl 6-hydroxyheptanoate, methyl 8-hydroxynonanoate and methyl 13-hydroxytetradecanoate. The polycondensation at 70 "C in toluene gave a polyester of high yield with a M of around several thousand and an enantiomeric excess higher than 74% [18]. [Pg.425]

Rubber-Modified Copolymers. Acrylonitrile—butadiene—styrene polymers have become important commercial products since the mid-1950s. The development and properties of ABS polymers have been discussed in detail (76) (see Acrylonitrile polymers). ABS polymers, like HIPS, are two-phase systems in which the elastomer component is dispersed in the rigid SAN copolymer matrix. The electron photomicrographs in Figure 6 show the difference in morphology of mass vs emulsion ABS polymers. The differences in stmcture of the dispersed phases are primarily a result of differences in production processes, types of mbber used, and variation in mbber concentrations. [Pg.508]

There has also been a demand in recent years for an ABS-type material with an enhanced heat distortion temperature. In ABS polymers this is largely controlled by the Tg of the resin or glassy component. Consequently three approaches to raising the distortion temperature have been developed. They... [Pg.446]

The first approach has been important commercially. The monomer most commonly used is a-methylstyrene (see Section 16.11), whose polymer has a Tg of about 120°C. The heat distortion temperature of the resultant-ABS type polymer will depend on the level of replacement of styrene by the a-methyl-styrene. (It may be noted in passing that a-methylstyrene-acrylonitrile binary copolymers have been available as alternatives to styrene-acrylonitrile materials but have not achieved commercial significance.)... [Pg.446]

Blending of ABS with other polymers is not restricted to the aim of raising the distortion temperature. Blends with PVC are made for various purposes. For example, 80 20 ABS/PVC blends are used to produce fire-retarding ABS-type materials, as already mentioned, while 10 90 blends are considered as impact-modified forms of unplasticised PVC. ABS materials have also been blended with plasticised PVC to give a crashpad sheet material. [Pg.446]

Blending of ABS with an acrylic material such as poly(methyl methacrylate) can in some cases allow a matching of the refractive indices of the rubbery and glassy phases and providing that there is a low level of contaminating material such as soap and an absence of insoluble additives a reasonable transparent ABS-type polymer may be obtained. More sophisticated are the complex terpolymers and blends of the MBS type considered below. Seldom used on their own, they are primarily of use as impact modifiers for unplasticised PVC. [Pg.446]

In three dimensions, Ohta and Kurokawa [32] reported that a BCC arrangement was only slightly more favored than the FCC arrangement. In fact, many BCC structures have been reported for AB type block copolymers and the blends of homopolymer-block copolymer systems [27,33-35]. However, the lattice structure of the core-shell type polymer microspheres was FCC. This FCC formation resulted in the lower viscosity of... [Pg.605]

PAs can be divided into polymers synthesized from diamines and diacids, called AA-BB-type polymers as in (3.1) and polymers based on amino acids, called AB-type polymers as in (3.2) ... [Pg.135]

The AB polyamides are made from either >-amino acids or cyclic lactams, derivatives of the oj-amino acids (Table 3.1). In these polymers, the amino and acid groups are inherently balanced and the polymer also contains one amino and one acid endgroup. There are a number of different routes available for polymerizing these AB-type polyamides ... [Pg.173]

The most important AB-type PA is PA-6, having six carbon atoms in the repeat unit and therefore five methylene groups. In addition to PA 6, PA-11 and PA-12 are also commercially available. The synthesis of many AB-type PAs, PA-1 to PA-22, have been studied,5,6,12,28 but the quality of the resultant polymers is highly dependent on the purity of the starting materials. [Pg.174]

AB-type polycondensations, 330 AB-type polymers, 135 Accelerated weathering tests, 245 Acceptor-catalytic polyesterification, 75 4-Acetoxy benzoic acid, poly esterification of, 74... [Pg.575]

The synthesis of a PPV derivative, 94, with donor (di-n-hexylamino) and acceptor (nitro) substituents attached regioselectively to the PPV backbone, was published by Yu et al. following the Heck-type cross coupling approach [118] starting from an AB-type monomer (95). The red-orange polymer (94), which is soluble in THE, chloroform and 1,2-dichloroethane, displays a number-average molecular weight M of about 12,000. [Pg.208]

As early as 1952, Flory [5, 6] pointed out that the polycondensation of AB -type monomers will result in soluble highly branched polymers and he calculated the molecular weight distribution (MWD) and its averages using a statistical derivation. Ill-defined branched polycondensates were reported even earlier [7,8]. In 1972, Baker et al. reported the polycondensation of polyhydrox-ymonocarboxylic acids, (OH)nR-COOH, where n is an integer from two to six [ 9]. In 1982, Kricheldorf et al. [ 10] pubhshed the cocondensation of AB and AB2 monomers to form branched polyesters. However, only after Kim and Webster published the synthesis of pure hyperbranched polyarylenes from an AB2 monomer in 1988 [11-13], this class of polymers became a topic of intensive research by many groups. A multitude of hyperbranched polymers synthesized via polycondensation of AB2 monomers have been reported, and many reviews have been published [1,2,14-16]. [Pg.3]

Nylons are classified into two categories AB and AABB polymers. Molecules of the AB type consist of repeat units that contain a single amide group, such as nylon 6, which is illustrated in Fig. 23.2 a). Molecules of the AABB type consist of repeat units that contain two amide groups, such as nylon 66 (pronounced nylon six six ), which is illustrated in Fig. 23.2 b). Type AB nylons are made from a single monomer, such as caprolactam, which is shown in Fig. 23,3 a). We make type AABB nylons from diamines and diacids, such as adipic acid and hexamethylene diamine, which are shown in Fig. 23.3 b) and c), respectively. [Pg.358]

ABA-type triblock copolymerization of MMA/BuA/MMA should give rubberlike elastic polymers. The resulting copolymers should have two vitreous outer blocks, where the poly(MMA) moiety (hard segment) associates with the nodules, and the central soft poly(BuA) elastomeric block provides rubber elasticity. Ihara et al. [35] were the first to synthesize an AB-type block copolymer, with MMA (190 equivalents of initiator) first polymerized by... [Pg.70]

Polymer micelles are nanometer sized (usually several tens of nanometers) self-assembled particles having a hydrophobic core and hydrophilic outer shell composed of amphiphilic AB- or ABA-type block copolymers, and are utilized as drug delivery vehicles. The first polymer micelle-type drug delivery vehicle was made of PEG-b-poly(aspartic acid) (PEG-b-PAsp), immobilizing the hydro-phobic anticancer drugDXR [188-191]. After this achievement by Kataoka et al., a great amount of research on polymer micelles has been carried out, and there are several reviews available on the subject [192-194]. [Pg.82]

Difunctional Iniferter X-X > X-QA X Telechelic polymer, AB- or ABA-type block copolymer... [Pg.82]

The preferred morphology of these rubber modified amorphous thermoplastics is the distribution of distinct rubber particles unfilled or filled in an isotropic matrix of the basic polymer. This was shown to be the case for rubber modified polystyrene and for ABS-type polymers. [Pg.290]

Condensation polymerizations (polycondensations) are stepwise reactions between bifunctional or polyfunctional components, with elimination of small molecules such as water, alcohol, or hydrogen and the formation of macromo-lecular substances. For the preparation of linear condensation polymers from bifunctional compounds (the same considerations apply to polyfunctional compounds which then lead to branched, hyperbranched, or crosslinked condensation polymers) there are basically two possibilities. One either starts from a monomer which has two unlike groups suitable for polycondensation (AB type), or one starts from two different monomers, each possessing a pair of identical reactive groups that can react with each other (AABB type). An example of the AB type is the polycondensation of hydroxycarboxylic acids ... [Pg.263]

The formation of a condensation polymer is a stepwise process. Thus, the first step in the polycondensation of a hydroxycarboxylic acid (AB type) is the formation of a dimer that possesses the same end groups as the initial monomer ... [Pg.263]

Imbalance in the stoichiometry of polycondensation reactions of AA-BB-type monomers can be overcome by changing to heterofunctional AB-type monomers. Indeed, IIMU has been subjected to bulk polycondensation using lipases as catalyst in the presence of 4 A molecular sieves. At 70 °C, CALB showed 84% monomer conversion and a low molecular weight polymer (Mn 1.1 kDa, PDI 1.9). No significant polymerization was observed with other lipases (except R cepacia lipase, 47% conversion, oligomers only) and in reference reactions with thermally deactivated CALB or in the absence of enzyme. Further optimization of the reaction conditions (60wt% CALB, II0°C, 3 days, 4 A molecular sieves) gave a polymer with Mn of 14.8 kDa (PDI 2.3) in 86% yield after precipitation [42]. [Pg.73]


See other pages where Polymers ABS type is mentioned: [Pg.84]    [Pg.279]    [Pg.279]    [Pg.116]    [Pg.84]    [Pg.279]    [Pg.279]    [Pg.116]    [Pg.215]    [Pg.246]    [Pg.261]    [Pg.444]    [Pg.449]    [Pg.605]    [Pg.605]    [Pg.606]    [Pg.748]    [Pg.138]    [Pg.164]    [Pg.154]    [Pg.75]    [Pg.76]    [Pg.76]    [Pg.13]    [Pg.295]    [Pg.41]    [Pg.571]    [Pg.41]    [Pg.271]    [Pg.78]    [Pg.4]    [Pg.44]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



AB-Type

Polymers types

© 2024 chempedia.info