Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization Section

The SPS polymerization is very unique. Liquid styrene monomer is polymerized with homogeneous catalysts and produces SPS powder in the reactor. This is in contrast to Ziegler-Natta catalysts, which have solid components and powders that can easily be obtained by the growth of the solid components in bulk polyethylene and polypropylene plants. Under limited operational conditions and with a special equipment, SPS powder can be obtained. The SPS polymerization systems are very difficult to design. There are three types of SPS reactor processes from the patent information. [Pg.256]


Polyethylene (Section 6 21) A polymer of ethylene Polymer (Section 6 21) Large molecule formed by the repeti tive combination of many smaller molecules (monomers) Polymerase chain reaction (Section 28 16) A laboratory method for making multiple copies of DNA Polymerization (Section 6 21) Process by which a polymer is prepared The principal processes include free radical cationic coordination and condensation polymerization Polypeptide (Section 27 1) A polymer made up of many (more than eight to ten) amino acid residues Polypropylene (Section 6 21) A polymer of propene Polysaccharide (Sections 25 1 and 25 15) A carbohydrate that yields many monosacchande units on hydrolysis Potential energy (Section 2 18) The energy a system has ex elusive of Its kinetic energy... [Pg.1291]

Polymerization (Section 6.21) Process by which a polymer is prepared. The principal processes include free-radical, cationic, coordination, and condensation polymerization. [Pg.1291]

Other radical reactions not covered in this chapter are mentioned in the chapters that follow. These include additions to systems other than carbon-carbon double bonds [e.g. additions to aromatic systems (Section 3.4.2.2.1) and strained ring systems (Section 4.4.2)], transfer of heteroatoms [eg. chain transfer to disulfides (Section 6.2.2.2) and halocarbons (Section 6.2.2.4)] or groups of atoms [eg. in RAFT polymerization (Section 9.5.3)], and radical-radical reactions involving heteroatom-centered radicals or metal complexes [e g. in inhibition (Sections 3.5.2 and 5.3), NMP (Section 9.3.6) and ATRP (Section 9.4)]. [Pg.11]

Most radicals are transient species. They (e.%. 1-10) decay by self-reaction with rates at or close to the diffusion-controlled limit (Section 1.4). This situation also pertains in conventional radical polymerization. Certain radicals, however, have thermodynamic stability, kinetic stability (persistence) or both that is conferred by appropriate substitution. Some well-known examples of stable radicals are diphenylpicrylhydrazyl (DPPH), nitroxides such as 2,2,6,6-tetramethylpiperidin-A -oxyl (TEMPO), triphenylniethyl radical (13) and galvinoxyl (14). Some examples of carbon-centered radicals which are persistent but which do not have intrinsic thermodynamic stability are shown in Section 1.4.3.2. These radicals (DPPH, TEMPO, 13, 14) are comparatively stable in isolation as solids or in solution and either do not react or react very slowly with compounds usually thought of as substrates for radical reactions. They may, nonetheless, react with less stable radicals at close to diffusion controlled rates. In polymer synthesis these species find use as inhibitors (to stabilize monomers against polymerization or to quench radical reactions - Section 5,3.1) and as reversible termination agents (in living radical polymerization - Section 9.3). [Pg.14]

Primary radical termination is also of demonstrable significance when very high rates of initiation or very low monomer concentrations are employed. It should be noted that these conditions pertain in all polymerizations at high conversion and in starved feed processes. Some syntheses of telechelics are based on this process (Section 7.5.1). Reversible primary radical termination by combination with a persistent radical is the desired pathway in many forms of living radical polymerization (Section 9.3). [Pg.62]

The reaction of radicals with nitroxides is reversible. 09 This means that the highest temperature that the technique can reasonably be employed at is ca 80 °C for tertiary propagating species and ca 120 °C for secondary propagating species.22 These maximum temperatures are only guidelines. The stability of alkoxyamines is also dependent on solvent (polar solvents favor decomposition) and the structure of the trapped species. This chemistry has led to certain alkoxyamines being useful as initiators of living polymerization (Section 9.3.6). At elevated temperatures nitroxides are observed to add to monomer albeit slowly. 3IS 5" 523... [Pg.140]

Intramolecular rearrangement of the initially formed radical may occur occasionally (e.g. backbiting - Section 4.4.3) or even be the dominant pathway (e.g. cyelopolymerization - Section 4.4.1, ring-opening polymerization - Section 4.4.2). These pathways can give rise to branches, rings, or internal unsaturation in the polymer chain. [Pg.167]

Early reports37 157 167 suggested that termination during VAc polymerization involved predominantly disproportionation. However, these investigations did not adequately allow for the occurrence of transfer to monomer and/or polymer, which are extremely important during VAc polymerization (Sections 6.2.6.2 and 6.2.7.4 respectively). These problems were addressed by Bamford et who used the gelation technique (Section 5.2.2,2) to show that the predominant radical-radical termination mechanism is combination (25 °C). [Pg.263]

Stable radicals can show selectivity for particular radicals. For example, nitroxides do not trap oxygcn-ecntcrcd radicals yet react with carbon-ccntcrcd radicals by coupling at or near diffusion controlled rates.179,184 This capability was utilized by Rizzardo and Solomon181 to develop a technique for characterizing radical reactions and has been extensively used in the examination of initiation of radical polymerization (Section 3.5.2.4). In contrast DPPH, w hile an efficient... [Pg.268]

The efficiency of these inhibitors may depend on reaction conditions. For example the reaction of radicals with stable radicals (e.g. nitroxides) may be reversible at elevated temperatures (Section 7.5.3) triphenylmethyl may initiate polymerizations (Section 7.5.2). A further complication is that the products may be capable of undergoing further radical chemistry. In the case of DPPH (22) this is attributed to the fact that the product is an aromatic nitro-compound (Section 5.3.7). Certain adducts may undergo induced decomposition to form a stable radical which can then scavenge further. [Pg.268]

Copolymerization of macromonomers formed by backbiting and fragmentation is a second mechanism for long chain branch formation during acrylate polymerization (Section 4.4.3.3). The extents of long and short chain branching in acrylate polymers in emulsion polymerization as a function of conditions have been quantified.20 ... [Pg.322]

Heterogeneous polymerization processes (emulsion, miniemulsion, non-aqueous dispersion) offer another possibility for reducing the rate of termination through what are known as compartmcntalization effects. In emulsion polymerization, it is believed that the mechanism for chain stoppage within the particles is not radical-radical termination but transfer to monomer (Section 5.2.1.5). These possibilities have provided impetus for the development ofliving heterogeneous polymerization (Sections 9.3.6.6, 9.4.3.2, 9.5.3.6). [Pg.455]

Since the dithiocarbatnyl end groups 8 are thermally stable but pholochemically labile at usual polymerization temperatures, only photo-initiated polymerizations have the potential to show living characteristics. However, various disulfides, for example, 9 and 10, have been used to prepare end-functional polymers37 and block copolymers38 by irreversible chain transfer in non-living thermally-initiated polymerization (Section 7.5.1). [Pg.463]

The processes described in this section should be contrasted with RAFT polymerization (Section 9.5.3), which can involve the use of similar thioearbonylthio compounds. A. A -dialkyl dithiocarbamates have very low transfer constants in polymerizations of S and (mctb)acrylatcs and arc not effective in RAFT polymerization of these monomers. However, /V,A -dialkyl dithiocarbamates have been successfully used in RAFT polymerization of VAc. Certain O-alkyl xanthates have been successfully used to control RAFT polymerizations of VAc, acrylates and S. The failure of the earlier experiments using these reagents and monomers to provide narrow molecular weight distributions by a RAFT mechanism can he attributed to the use of non-ideal reaction conditions and reagent choice. A two part photo-initiator system comprising a mixture of a benzyl dithiocarhamate and a dithiuram disulfide has also been described and provides better control (narrower molecular weight distributions).43... [Pg.464]

Prior to the development of NMP, nitroxides were well known as inhibitors of polymerization (Section 5.3.1). They and various derivatives were (and still are) widely used in polymer stabilization. Both applications are based on the property of nitroxides to efficiently scavenge carbon-centered radicals by combining with them at near diffusion-controlled rates to form alkoxyamines. This property also saw nitroxides exploited as trapping agents to define initiation mechanisms (Section 3.5.2.4). [Pg.471]

Of the major methods for living radical polymerization, NMP appears the most successful for polymerization of the diene monomers. There are a number of reports on the use of NMP of diene monomers (B, I) with TEMPO,188,1103 861 4, cw and other nitroxides.127 High reaction temperatures (120-135 °C) were employed in all cases. The ratio of 1,2- 1,4-cis 1,4-trans structures obtained is similar to that observed in conventional radical polymerization (Section 4.3.2). [Pg.481]

Polymerization of S and certain fluoro-monomers in the presence of alkyl iodides provided the first example of the reversible homolytic substitution process (Scheme 9.35). This process is also known as iodine transfer polymerization (Section 9.5.4).381 Other examples of reversible homolytic substitution are polymerizations conducted in the presence of certain alkyl tellurides or stibines (Sections 9.5.5 and 9.5.6 respectively). [Pg.499]

A novel approach to RAFT emulsion polymerization has recently been reported.461529 In a first step, a water-soluble monomer (AA) was polymerized in the aqueous phase to a low degree of polymerization to form a macro RAFT agent. A hydrophobic monomer (BA) was then added under controlled feed to give amphiphilic oligomers that form micelles. These constitute a RAFT-containing seed. Continued controlled feed of hydrophobic monomer may be used to continue the emulsion polymerization. The process appears directly analogous to the self-stabilizing lattices approach previously used in macromonomer RAFT polymerization (Section 9.5.2). Both processes allow emulsion polymerization without added surfactant. [Pg.521]

Supported Ziegler-type neodymium surface species (54, see below) have been prepared by mixing molecular components composed of [Nd(naph)3] (derived from naphthenonic acids) and alkyl aluminium reagents such as Al2Et3Cl3, Al( Bu)3 and/or Al( Bu)2H at 50-60°C with silica (source QiLu Petrochemicals Co., China) [158-160]. Although the immobihzed neodymium species are iU-defined, the materials display interesting properties in butadiene polymerization (Section 12.4.1.2). [Pg.478]

In another variant of the kinetic method, the shapes of curves of Mn, Mw, or [ /], versus conversion in batch polymerization may be used to obtain transfer coefficients, both with monomer and with polymer this procedure has been used by Wheeler (142), Graessley (143), and others, to obtain transfer coefficients for vinyl acetate polymerization (Section 11). [Pg.43]

Sims (40) has studied the effects of water on PF5 initiation of THF polymerization (Section IIIB2b). Possibly, in addition to cocatalysis and destruction of catalyst, his results are complicated by transfer. [Pg.555]

Imines formed from ammonia and aldehydes (RCH=NH) are very unstable and readily polymerize (Section 16-4C). However, substitution of an alkyl or aryl group on the nitrogen increases the stability, and IV-substituted... [Pg.1122]

We then have a strong (M — 1)+ peak and weaker (M + 29) and (M + 41)+ peaks. The larger cations probably are similar to those formed in cationic polymerization (Section 10-8B), whereas formation of the (M — 1)+ cation corresponds to the hydrogen-transfer reaction discussed in Section 10-9. [Pg.1362]

Articles in which glass fibers are imbedded to improve impact strength often are made by mixing the fibers with an ethenylbenzene (styrene) solution of a linear glycol (usually l,2-propanediol)-butenedioic anhydride polyester and then producing a cross-linked polymer between the styrene and the double bonds in the polyester chains by a peroxide-induced radical polymerization (Section 29-6E). [Pg.1440]

The ester, 10, then becomes connected to the double bond of a molecule of 9, probably in an enzyme-induced carbocation type of polymerization (Section 10-8B) ... [Pg.1484]


See other pages where Polymerization Section is mentioned: [Pg.482]    [Pg.259]    [Pg.249]    [Pg.98]    [Pg.270]    [Pg.296]    [Pg.297]    [Pg.310]    [Pg.398]    [Pg.401]    [Pg.423]    [Pg.437]    [Pg.456]    [Pg.487]    [Pg.532]    [Pg.558]    [Pg.560]    [Pg.286]    [Pg.184]    [Pg.475]    [Pg.39]    [Pg.226]    [Pg.636]    [Pg.299]    [Pg.118]   


SEARCH



© 2024 chempedia.info