Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling polymerization

Oxidative coupling polymerizations represent a general reaction for the preparation of high molecular weight linear polymers from many 2,6-di- and... [Pg.328]

The halogen displacement polymerization proceeds by a combination of the redistribution steps described for oxidative coupling polymerization and a sequence in which a phenoxide ion couples with a phenoxy radical (eq. 11) and then expels a bromide ion. The resultant phenoxy radical can couple with another phenoxide in a manner that is analogous to equation 11 or it can redistribute with other aryloxy radicals in a process analogous to equations 7 and 8. [Pg.329]

Several macrointermediates to obtain this kind of copolymer were used via free radical, ionic, and/or free radical-ionic coupling polymerization. In this manner, macroinitiators, macromonomers, and macromono-meric initiators will be discussed in this chapter. [Pg.726]

Optically active polymers are potentially very useful in areas such as asymmetric catalysis, nonlinear optics, polarized photo and electroluminescence, and enantioselective separation and sensing.26 Transition metal coupling polymerization has also been applied to the synthesis of these polymers.27 For example, from the Ni(II)-catalyzed polymerization, a regioregular head-to-tail polymer 32 was obtained (Scheme 9.17).28 This polymer is optically active because of the optically active chiral side chains. [Pg.473]

Transition metal coupling polymerization has also been used to synthesize optically active polymers with stable main-chain chirality such as polymers 33, 34, 35, and 36 by using optically active monomers.29-31 These polymers are useful for chiral separation and asymmetric catalysis. For example, polymers 33 and 34 have been used as polymeric chiral catalysts for asymmetric catalysis. Due... [Pg.473]

Like other step-growth polymerization methods, factors such as the monomer purity, ratio of the monomers, conversion, temperature, and concentration will greatly influence the transition metal coupling polymerization. These factors have to be taken into account when higher molecular weight polymers need to be prepared.33... [Pg.477]

It has been shown recently that the selective reductive homo-coupling polymerization of aromatic diisocyanates via one electron transfer promoted by samarium iodide in the presence of hexamethylphosphoramide [PO(NMe2)3] (HMPA) can produce poly(oxamide)s in nearly quantitative yield (Scheme 9). [Pg.73]

Scheme 6.79 Hydrosilylation of ketones [164], Dotz benzannulation chemistry [165], cobalt-mediated synthesis of angular [4]phenylenes [166], and nickel-mediated coupling polymerizations [167],... Scheme 6.79 Hydrosilylation of ketones [164], Dotz benzannulation chemistry [165], cobalt-mediated synthesis of angular [4]phenylenes [166], and nickel-mediated coupling polymerizations [167],...
S. Amou, O. Haba, K. Shirato, T. Hayakawa, M. Ueda, K. Takeuchi, and M. Asai, Head-to-tail regioregularity of poly(3-hexylthiophene) in oxidative coupling polymerization with FeCl3, J. Polym. Sci., Part A Polym. Chem., 37 1943-1948, 1999. [Pg.281]

Takeishi, et. al, have described the redox polymerization of methyl methacrylate in the absence of solvent (6). With 18-crown-6 as the phase transfer catalyst and potassium persulfate/sodiurn bisulfite as the redox couple, polymerization was observed at temperatures <50 C whereas little or no polymerization occurred under these conditions in the absence of bisulfite. Above 55 C, however, polymerization occurred even in the absence of bisulfite. From the limited kinetic data reported (6), one can estimate (13) that the rate of polymerization (Rp) is approximately proportional to the square root of crown concentration (Equation 1) ... [Pg.118]

With the bisoxazoline hgand (S)-Phbox and CuCl, the asymmetric oxidative couphng of 2-naphthol and hydroxy-2-naphthoates resulted in an asymmetrically substituted 2,2 -binaphthol with ee s of up to 65% [260]. On the basis of the previous results obtained with this catalyst system, the asymmetric oxidative cross-coupling polymerization of 2,3-dihydroxynaphthalene [261] and methyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate [262] as well as the copolymerization of 6,6 -dihydroxy-2,2 -binaphthalene and dihexyl 6,6 -dihydroxy-2,2 -binaphthalene-7,7 -dicarboxylate with Cu diamine catalysts were carried out imder aerobic conditions, using O2 as the oxidant, and a cross-coupling selectivity of 99% was achieved [263]. [Pg.65]


See other pages where Coupling polymerization is mentioned: [Pg.328]    [Pg.64]    [Pg.326]    [Pg.331]    [Pg.43]    [Pg.419]    [Pg.420]    [Pg.347]    [Pg.467]    [Pg.472]    [Pg.472]    [Pg.483]    [Pg.489]    [Pg.599]    [Pg.103]    [Pg.134]    [Pg.135]    [Pg.135]    [Pg.52]    [Pg.56]    [Pg.82]    [Pg.87]    [Pg.124]    [Pg.132]    [Pg.139]    [Pg.161]    [Pg.177]    [Pg.252]    [Pg.187]    [Pg.204]    [Pg.153]    [Pg.146]    [Pg.146]    [Pg.147]    [Pg.66]    [Pg.653]   
See also in sourсe #XX -- [ Pg.375 ]




SEARCH



© 2024 chempedia.info