Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer Support solution processibility

The polymer-supported catalysts are thus important conceptually in linking catalysis in solutions and catalysis on supports. The acid—base chemistry is fundamentally the same whether the catalytic groups are present in a solution or anchored to the support. The polymer-supported catalysts have replaced acid solutions in numerous processes because they minimise the corrosion, separation, and disposal problems posed by mineral acids. [Pg.175]

The artificial lipid bilayer is often prepared via the vesicle-fusion method [8]. In the vesicle fusion process, immersing a solid substrate in a vesicle dispersion solution induces adsorption and rupture of the vesicles on the substrate, which yields a planar and continuous lipid bilayer structure (Figure 13.1) [9]. The Langmuir-Blodgett transfer process is also a useful method [10]. These artificial lipid bilayers can support various biomolecules [11-16]. However, we have to take care because some transmembrane proteins incorporated in these artificial lipid bilayers interact directly with the substrate surface due to a lack of sufficient space between the bilayer and the substrate. This alters the native properties of the proteins and prohibits free diffusion in the lipid bilayer [17[. To avoid this undesirable situation, polymer-supported bilayers [7, 18, 19] or tethered bilayers [20, 21] are used. [Pg.226]

Even in solution the relative rigidity of the polymer support can play a significant role in the reactivity of attached functional groups. Contrasting studies conducted with chloromethylated derivatives of poly(arylene ether sulfone) (Tg 175°C), phenoxy resin (Tg= 65°C) and polystyrene (Tg= 105°C) allow evaluation of chain rigidity effects. We have shown that the rates of quaternization of chloromethylated poly(arylene ether sulfones) and phenoxy resin deviate from the anticipated second order process at... [Pg.7]

In 2001, Sarko and coworkers disclosed the synthesis of an 800-membered solution-phase library of substituted prolines based on multicomponent chemistry (Scheme 6.187) [349]. The process involved microwave irradiation of an a-amino ester with 1.1 equivalents of an aldehyde in 1,2-dichloroethane or N,N-dimethyl-formamide at 180 °C for 2 min. After cooling, 0.8 equivalents of a maleimide dipo-larophile was added to the solution of the imine, and the mixture was subjected to microwave irradiation at 180 °C for a further 5 min. This produced the desired products in good yields and purities, as determined by HPLC, after scavenging excess aldehyde with polymer-supported sulfonylhydrazide resin. Analysis of each compound by LC-MS verified its purity and identity, thus indicating that a high quality library had been produced. [Pg.227]

Another metal-catalyzed microwave-assisted transformation performed on a polymer support involves the asymmetric allylic malonate alkylation reaction shown in Scheme 12.4. The rapid molybdenum(0)-catalyzed process involving thermostable chiral ligands proceeded with 99% ee on a solid support. When TentaGel was used as as support, however, the yields after cleavage were low (8-34%) compared with the corresponding solution phase microwave-assisted process (monomode cavity) which generally proceeded in high yields (>85%) [30],... [Pg.409]

Even though the products are not block copolymer structures, the work of Kadokawa and colleagues should be mentioned here. In a process that the authors named vine-twining polymerization (after the way that a vine plant grow helically around a support rod), the enzymatic polymerization of amylose is performed in the presence of synthetic polymers in solution, and the authors showed that the grown amylose chains incorporate the polymers into its helical cavity while polymerizing [184-191]. [Pg.38]

In summary, the polymer-bound oxoammonium reagent was highly efficient in polymer-supported oxidations of various alcohols and was capable of cleanly converting chemically diverse compound collections. No overoxidation to carboxylic acids was observed. It is obvious that this reagent shall be of great value in polymer-supported transformations in solution, in automated parallel synthesis operations, and in flow-through reactors in up-scaled production processes. [Pg.374]

Despite the breakthrough associated with Merrifield s approach, there are several limitations such as the discontinuous nature of the reaction, the need for large excesses of reagent and the mechanical instability of the polymer matrix. An early solution to the restrictions imposed by Merrifield s polystyrene supported batch process was the use of commercially available benzyl alcohol-functionalized silica (used for H PLC columns). This was initially derivatized with the first member of the peptide chain to be propagated. The synthesis of a tetrapeptide in flow was completed in half the time required for the equivalent batch mode assembly and required significantly smaller excesses of the solution-phase reagent [92],... [Pg.87]

The first enantioselective process within the flow domain was the reduction of valerophenone (5) by borane in the presence of the polymer-supported amino alcohol catalyst 6 (Scheme 4.52) as reported by Itsuno [100]. Solutions of 5 and borane were mixed into the bottom of the column using long syringe needles, and the product 7 flowed from the top. Following washing with TH F and water, acidic workup and bulb-to-bulb distillation, 1.8 g of 7 was isolated in 84% yield and in 83-91% ee, depending on the fraction analyzed. [Pg.88]

P-Amino adds were chosen for demonstrating feasibility of microreactor processing, as there are no chiral centers that may complicate the analysis of the products [6], Peptides are typically synthesized by solid-phase chemistry on polymer beads, a route discovered by and named after Merrifield [7,8]. These polymer supports are expensive. Additional steps for linkage to and deavage from the polymer are required. Hence, the motivation is to test solution chemistries as an alternative to the Merrifield approach. [Pg.213]

In addition, supported reagents have been demonstrated to be effective under reaction conditions when either thermal or microwave heating - is employed. They have also been utilised in traditional batch synthesis, stop-flow methods and continuous flow processes. ° However, one caveat is that the immobilisation of reagents can change their reactivity. For example, polymer-supported borohydride selectively reduces a,P-unsaturated carbonyl compounds to the a,P-unsaturated alcohoF in contrast to the behaviour of the solution-phase counterpart, which additionally causes double bond reduction. [Pg.6]

Abstract This review covers recent advances in the field of radical chemistry on solid phase. Intermolecular processes using both immobilized radicals with solution-phase acceptors and immobilized acceptors with radicals in solution are discussed, as are radical cyclization reactions on polymer supports. Progress in the development of solid-phase asymmetric radical processes and the design of linkers cleaved by radical processes are also discussed. [Pg.93]

Enholm [12] has also prepared an enantiomerically pure soluble polymer support 82 by couphng xylose-derived chiral auxiliary 81 with 77 (Scheme 18). The chiral support was then treated with bromopropionic acid 83 to give substrate 84. Eree radical allyl transfer from allyltributyltin imder thermal conditions provided 85 in 93% yield, and basic cleavage from the resin gave (R)-(-)-2-methylpent-4-enoic acid 86 in 80% yield and 97% ee, with a 92% yield of recovered 82. Previous studies of the same process in solution had found the addition of Lewis acids to be crucial for high selectivities to be obtained. Interestingly, the addition of Lewis acids to the reaction on polymer support led to cleavage of the carbohydrate from the polymer backbone. En-... [Pg.105]


See other pages where Polymer Support solution processibility is mentioned: [Pg.1264]    [Pg.538]    [Pg.516]    [Pg.112]    [Pg.283]    [Pg.218]    [Pg.106]    [Pg.361]    [Pg.285]    [Pg.175]    [Pg.441]    [Pg.175]    [Pg.32]    [Pg.78]    [Pg.472]    [Pg.488]    [Pg.569]    [Pg.219]    [Pg.569]    [Pg.771]    [Pg.181]    [Pg.353]    [Pg.214]    [Pg.253]    [Pg.319]    [Pg.9]    [Pg.174]    [Pg.412]    [Pg.5]    [Pg.95]    [Pg.95]    [Pg.132]    [Pg.1970]    [Pg.151]    [Pg.784]    [Pg.1273]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Solute process

Solution processability

Solution processes

Solution processing

Solution-processable polymers

Solutizer process

Support processes

© 2024 chempedia.info