Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer-Organic Solvent Phase Separation

We have a dilemma we need a high-quality solvent to insure that the polymer remains in solution when it is formed but we need a solvent whose quality can be easily adjusted to induce the polymer to drop out of solution. How can we resolve it First, we need to know the thermodynamic variables that cause the occurrence of an LCST (chapter 3). The key variable in this instance is the chemical nature of the solvent or, to a first approximation, the critical properties of the solvent. Decreasing the solvent quality shifts the LCST curve to lower temperatures, and it is this variable that we wish to manipulate to force the polymer out of solution. To demonstrate the effect of solvent quality on the location of the LCST curve, consider the difference in LCST behavior for the same polymer, polyisobutylene, in two different solvents, n-pentane and cyclooctane. The LCST curve for the polyisobutylene-rt-pentane system begins at 70°C, while for the polyisobutylene-cyclooctane system it begins at 300°C (Bardin and Patterson, 1969). Cyclooctane, which has a critical temperature near 300°C, is a much better solvent than n-pentane, which has a critical temperature near 200°C, probably because cyclooctane has a greater cohesive energy density that translates into a lower thermal expansion coefficient, or equivalently, a lower free volume. Numerous examples of LCST behavior of polymer-solvent mixtures are available in the literature, demonstrating the effect of solvent quality on the location of the LCST (Freeman and Rowlinson, 1960 Baker et al., 1966 Zeman and Patterson, 1972 Zeman et al., 1972 Allen and Baker, 1965 Saeki et al., 1973, 1974 Cowie and McEwen, 1974). [Pg.281]

The potential of this separation technique is demonstrated by Seckner, McClellan, and McHugh (1988) with the polystyrene-toluene-ethane system shown in figure 9.51. Without any ethane, the LCEP for the polystyrene- [Pg.281]

Before ending this section it is informative to contrast the behavior of a liquid antisolvent and a supercritical fluid antisolvent. Cowie and McEwen (1974) show that a liquid antisolvent could also be added to the polymer solution to shift the LCST to lower temperatures. However, a liquid additive [Pg.284]


A number of water-soluble polymers will cause phase separation when present together at concentrations of a few percent. The most widely used polymers are polyethylene glycol (PEG) and dextran. Proteins, other macromolecules, and cell components such as mitochondria distribute in the phases or collect at the interface. Proteins are destabilized at organic solvent/water interfaces, but when each solvent is water, the interfacial tension is negligible. Some salts such as potassium phosphate will also induce phase separation when a polymer is present, but the salt concentration must be high. Two-phase aqueous systems provide a mild method for purification of proteins, and scale-up to large volumes presents no engineering problems. The polymers... [Pg.1900]

For simple coacervation induced by non-solvent addition in aqueous systems, ethanol, acetone, dioxane, isopropanol, and propanol are the most preferred to cause polymer desolvation and phase separation. In organic systems, mainly non-polar solvents. [Pg.605]

Supported liquid membrane extraction techniques employ either two or three phases, with simultaneous forward- and back-extraction in the latter configuration. The aqueous sample phase is separated from the bulk organic or an aqueous receiver phase by a porous polymer membrane, in the form of either a flat sheet or a hollow fiber that has been impregnated with the organic solvent phase. The sample phase is continuously pumped, the receiver phase may be stagnant or pumped, and the organic phase in the membrane pores is stagnant and reusable [8-10]. [Pg.48]

Gyclodextrins. As indicated previously, the native cyclodextrins, which are thermally stable, have been used extensively in Hquid chromatographic chiral separations, but their utihty in gc appHcations was hampered because their highly crystallinity and insolubiUty in most organic solvents made them difficult to formulate into a gc stationary phase. However, some functionali2ed cyclodextrins form viscous oils suitable for gc stationary-phase coatings and have been used either neat or diluted in a polysiloxane polymer as chiral stationary phases for gc (119). Some of the derivati2ed cyclodextrins which have been adapted to gc phases are 3-0-acetyl-2,6-di-0-pentyl, 3-0-butyryl-2,6-di-0-pentyl,... [Pg.70]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Phase Separation. Microporous polymer systems consisting of essentially spherical, intercoimected voids, with a narrow range of pore and ceU-size distribution have been produced from a variety of thermoplastic resins by the phase-separation technique (127). If a polyolefin or polystyrene is insoluble in a solvent at low temperature but soluble at high temperatures, the solvent can be used to prepare a microporous polymer. When the solutions, containing 10—70% polymer, are cooled to ambient temperatures, the polymer separates as a second phase. The remaining nonsolvent can then be extracted from the solid material with common organic solvents. These microporous polymers may be useful in microfiltrations or as controlled-release carriers for a variety of chemicals. [Pg.408]

Naphthalenedisulfonate-acetonitrile as the only mobile phase with a silica column coated with a crosslinked aminofluorocarbon polymer has proven to be an effective combination for the separation of aliphatic anionic surfactants. Indirect conductivity and photometric detection modes are used to monitor these analytes. The retention of these surfactants is found to depend on both the ionic strength and the organic solvent content of the mobile phase. The mechanism of retention is considered to be a combination of both reverse phase and ion exchange processes. Selective separation of both alkanesulfonates and... [Pg.168]

Microspheres and microcapsules of lactide/glycolide polymers have received the most attention in recent years. Generally, three microencapsulation methods have been employed to afford controlled release formulations suitable for parenteral injection (1) solvent evaporation, (2) phase separation, and (3) fluidized bed coating. Each of these processes requires lactide/glycolide polymer soluble in an organic solvent. [Pg.8]

Phase separation microencapsulation procedures are suitable for entrapping water-soluble agents in lactide/glycolide excipients. Generally, the phase separation process involves coacervation of the polymer from an organic solvent by addition of a nonsolvent such as silicone oil. This process has proven useful for microencapsulation of water-soluble peptides and macromolecules (48). [Pg.9]


See other pages where Polymer-Organic Solvent Phase Separation is mentioned: [Pg.189]    [Pg.280]    [Pg.281]    [Pg.283]    [Pg.189]    [Pg.280]    [Pg.281]    [Pg.283]    [Pg.2144]    [Pg.24]    [Pg.4]    [Pg.194]    [Pg.245]    [Pg.143]    [Pg.8]    [Pg.9]    [Pg.47]    [Pg.318]    [Pg.532]    [Pg.10]    [Pg.140]    [Pg.280]    [Pg.285]    [Pg.545]    [Pg.985]    [Pg.257]    [Pg.113]    [Pg.47]    [Pg.55]    [Pg.106]    [Pg.2564]    [Pg.248]    [Pg.260]    [Pg.224]    [Pg.45]    [Pg.2060]    [Pg.500]    [Pg.332]    [Pg.182]    [Pg.112]    [Pg.22]    [Pg.67]    [Pg.418]    [Pg.76]   


SEARCH



Organic phase

Organic phases phase

Organic polymers

Organic separation

Organic-phase separation

Phase separation polymer-solvent

Phase separation, polymers

Polymer separations

Polymer separators

Solvent separate

© 2024 chempedia.info