Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer optical absorption

Computed optical properties tend not to be extremely accurate for polymers. The optical absorption spectra (UV/VIS) must be computed from semiempiri-cal or ah initio calculations. Vibrational spectra (IR) can be computed with some molecular mechanics or orbital-based methods. The refractive index is most often calculated from a group additivity technique, with a correction for density. [Pg.314]

Eig. 27. Optical absorption spectra of thin, 1 p.m-films of novolac, polyhydroxystyrene and polyacrylate polymers. The novolac resin is transparent only above 300 nm. While polyhydroxystyrene also absorbs strongly below 300 nm, it exhibits a region of adequate transparency centered near 248 nm. The... [Pg.128]

In each of these approaches, imaging is confined to the top of a single polymeric film by adjusting optical absorption. The penetration depth of the silylation agent and the attendant swelling of the polymer film must also be controlled to avoid distortion of the silylated image. Resists of this type are capable of very high resolution (Fig. 37). [Pg.133]

The changes in the optical absorption spectra of conducting polymers can be monitored using optoelectrochemical techniques. The optical spectmm of a thin polymer film, mounted on a transparent electrode, such as indium tin oxide (ITO) coated glass, is recorded. The cell is fitted with a counter and reference electrode so that the potential at the polymer-coated electrode can be controlled electrochemically. The absorption spectmm is recorded as a function of electrode potential, and the evolution of the polymer s band stmcture can be observed as it changes from insulating to conducting (11). [Pg.41]

In low-dimensional systems, such as quantum-confined. semiconductors and conjugated polymers, the first step of optical absorption is the creation of bound electron-hole pairs, known as excitons [34). Charge photogcncration (CPG) occurs when excitons break into positive and negative carriers. This process is of essential importance both for the understanding of the fundamental physics of these materials and for applications in photovoltaic devices and photodctcctors. Since exciton dissociation can be affected by an external electric field, field-induced spectroscopy is a powerful tool for studying CPG. [Pg.138]

Figure 11-4. Electroluminescence and optical absorption spectrum of the soluble polymer MEH-PPV. Figure 11-4. Electroluminescence and optical absorption spectrum of the soluble polymer MEH-PPV.
Platinum was added to Nation before Incorporating CdS In order to avoid the reduction of CdS during the platlnlzatlon process. Nation (DuPont 117, 0.018 cm thick) films were soaked In Pt(NH2)2l2 (0.1 mM) solution for 4 hr. The amount of the Pt complex Incorporated was determined by measuring the optical absorption change In the liquid phase. The films were subsequently reduced with NaBH (0.1 M) solution for one day to produce Pt metal dispersed throughout the polymer film. The amount of Pt was found to be about 0.02 mg cm 2. [Pg.567]

In order to follow progress of elimination, reactions were also performed on thin films in a special sealed glass cell which permitted in situ monitoring of the electronic or infrared spectra at room temperature (23°C). Typically, the infrared or electronic spectrum of the pristine precursor polymer film was obtained and then bromide vapor was introduced into the reaction vessel. In situ FTIR spectra in the 250-4000 cm-- - region were recorded every 90 sec with a Digilab Model FTS-14 spectrometer and optical absorption spectra in the 185-3200 nm (0.39-6.70 eV) range were recorded every 15 min with a Perkin-Elmer Model Lambda 9 UV-vis-NIR spectrophotometer. The reactions were continued until no visible changes were detected in the spectra. [Pg.447]

Significantly, the bio-inorganic and polymer-containing PM nanocomposites showed no significant shift in the protein amide I and II vibration bands, or in the characteristic 567 nm optical absorption band of the retinal chromophore of BR, indicating that the structural and dynamical properties of the membrane-bound... [Pg.260]

Sensitivity impacts upon the limit of detection and resolution of the device, making it a key performance parameter. Recently, several strategies have been developed in order to provide sensitivity enhancements for optical sensor platforms based on both optical absorption and fluorescence phenomena. These strategies are the result of rigorous theoretical analyses of the relevant systems and, combined with polymer processing technology and planar fabrication protocols, provide a viable route for the development of low-cost, efficient optical sensor platforms. [Pg.195]

The occurrence of bipolaronic states in the polymer chains promotes optical absorption prior to the n-n gap transitions. In fact, referring to the example (9.30) of the band structure of doped heterocyclic polymers, transitions may occur from the valence band to the bipolaronic levels. These intergap transitions are revealed by changes in the optical absorptions, as shown by Fig. 9.8 which illustrates the typical case of the spectral evolution of polydithienothiophene upon electrochemical doping (Danieli et al., 1985). [Pg.245]

Since the band structure which develops upon doping induces changes not only in the conductivity but also in the optical absorption (see Fig. 9.8), conducting polymers may be exploited for electrochromic displays, which are optical devices with marked colour transitions. An example is illustrated diagramatically in Fig. 9.18. [Pg.259]


See other pages where Polymer optical absorption is mentioned: [Pg.3]    [Pg.3]    [Pg.122]    [Pg.128]    [Pg.130]    [Pg.40]    [Pg.138]    [Pg.181]    [Pg.182]    [Pg.216]    [Pg.284]    [Pg.390]    [Pg.428]    [Pg.494]    [Pg.587]    [Pg.611]    [Pg.444]    [Pg.208]    [Pg.236]    [Pg.712]    [Pg.331]    [Pg.338]    [Pg.188]    [Pg.7]    [Pg.8]    [Pg.337]    [Pg.7]    [Pg.13]    [Pg.212]    [Pg.26]    [Pg.629]    [Pg.52]    [Pg.188]    [Pg.23]    [Pg.19]    [Pg.19]    [Pg.57]    [Pg.319]    [Pg.117]    [Pg.118]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Optical absorption

Optical polymers

Polymer absorption

© 2024 chempedia.info