Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer Microreactors

Besides the synthesis of bulk polymers, microreactor technology is also used for more specialized polymerization applications such as the formation of polymer membranes or particles [119, 141-146] Bouqey et al. [142] synthesized monodisperse and size-controlled polymer particles from emulsions polymerization under UV irradiation in a microfluidic system. By incorporating a functional comonomer, polymer microparticles bearing reactive groups on their surface were obtained, which could be linked together to form polymer beads necklaces. The ability to confine and position the boundary between immiscible liquids inside microchannels was utilized by Beebe and coworkers [145] and Kitamori and coworkers [146] for the fabrication of semipermeable polyamide membranes in a microfluidic chip via interfacial polycondensation. [Pg.331]

More recently, noninvasive coding schemes, with nonchemical tags such as radiofrequency memory units, have been used. IRORI Quantum Microchemistry s radiofrequency AccuTag-100 system aims to combine the advantages of both parallel synthesis and split and pool. The system combines glass-encapsulated microchip tags, polymer microreactors, and software, in order to produce a turnkey solution for combinatorial chemistry. [Pg.412]

At the initial stage of bulk copolymerization the reaction system represents the diluted solution of macromolecules in monomers. Every radical here is an individual microreactor with boundaries permeable to monomer molecules, whose concentrations in this microreactor are governed by the thermodynamic equilibrium whereas the polymer chain propagation is kinetically controlled. The evolution of the composition of a macroradical X under the increase of its length Z is described by the set of equations ... [Pg.184]

Polymer-based microreactor systems [e.g., made of poly(dimethyl-siloxane) (PDMS)], with inner volumes in the nanoliter to microliter range (Hansen et al. 2006), are relatively inexpensive and easy to produce. Many solvents used for organic transformations are not compatible with the polymers that show limited mechanical stability and low thermal conductivity. Thus the application of these reactors is mostly restricted to aqueous chemistry at atmospheric pressure and temperatures for biochemical applications (Hansen et al. 2006 Wang et al. 2006 Duan et al. 2006). [Pg.7]

Examples of using metal, polymer, and glass microreactors appear in other chapters of this volume. The present chapter focuses on microreactors created in silicon, a material that has high mechanical strength,... [Pg.58]

Each microreactor consists of a polymer-bound substrate and a radiofrequency encoded microchip enclosed within a small porous vessel. The radiofrequency tag allows the identity of the substrate contained within each microreactor to be established readily. Using this technology, the polymer-bound substrates 86 were individually elaborated, within separate microreactors, by sequential reactions with acids 87 and alcohols 88 in a similar way to the solution-phase processes [25c]. Each of the microreactors was then subjected to the tandem RCM resin-cleavage conditions employing initiator 3. The products from each microreactor were obtained as a mixture of four compounds (89-92). The library of analogs prepared by this technique was then screened for biological activity [25c]. [Pg.98]

The continuous availability of trillions of independent microreactors greatly multiplied the initial mixture of extraterrestrial organics and hydrothermal vent-produced chemicals into a rich variety of adsorbed and transformed materials, including lipids, amphiphiles, chiral metal complexes, amino add polymers, and nudeo-tide bases. Production and chiral amplification of polypeptides and other polymeric molecules would be induced by exposure of absorbed amino adds and organics to dehydration/rehydration cydes promoted by heat-flows beneath a sea-level hydro-thermal field or by sporadic subaerial exposure of near-shore vents and surfaces. In this environment the e.e. of chiral amino adds could have provided the ligands required for any metal centers capable of catalyzing enantiomeric dominance. The auto-amplification of a small e.e. of i-amino adds, whether extraterrestrially delivered or fluctuationally induced, thus becomes conceptually reasonable. [Pg.199]

The sequence includes several synthetic steps over polymer-supported catalysts in directly coupled commercially available Omnifit glass reaction columns [41] using a Syrris Africa microreactor system [14], Thales H-Cube flow hydrogenator [32] and a microfluidic chip. The process affords the alkaloid in 90% purity after solvent evaporation, but in a moderate 40% yield. After a closer investigation it was concluded that this is due to the poor yield of 50% in the phenolic oxidation step. On condition that this is resolved with the use of a more effective supported agent, the route would provide satisfactory yields and purities of the product. [Pg.189]

In this study, a nonchemical means of encoding the identity of each compound was used. The original polymer-bound reagent was placed in a porous microreactor equipped with a radio-frequency device that can be used for identification.168 The porous micro-... [Pg.907]

Multiplex CARS microspectroscopy, in conjunction with appropriate spectral analysis tools, was successfully applied to the study of phospholipid bilayer model systems [120, 121, 142, 70, 143], lipids within cells [144, 127, 145-147, 141], a single pollen grain [148], a single bacterial endophore [140], a molecular J-aggregate microcrystal [149], silicon components on a wafer [130], separated phases in polymer blends [123, 135], and concentration profiles in a microreactor [150]. [Pg.133]

Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed. [Pg.261]

Peterson, D.S., Rohr, T., Svec, F., Frechet, J. M.J., Enzymatic microreactor-on-a-chip Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal. Chem. 2002, 74(16), 4081M088. [Pg.468]


See other pages where Polymer Microreactors is mentioned: [Pg.535]    [Pg.554]    [Pg.554]    [Pg.220]    [Pg.312]    [Pg.535]    [Pg.554]    [Pg.554]    [Pg.220]    [Pg.312]    [Pg.67]    [Pg.108]    [Pg.33]    [Pg.38]    [Pg.1259]    [Pg.149]    [Pg.169]    [Pg.170]    [Pg.173]    [Pg.173]    [Pg.174]    [Pg.175]    [Pg.178]    [Pg.5]    [Pg.10]    [Pg.58]    [Pg.61]    [Pg.58]    [Pg.528]    [Pg.530]    [Pg.65]    [Pg.94]    [Pg.100]    [Pg.909]    [Pg.31]    [Pg.34]    [Pg.139]    [Pg.147]    [Pg.35]    [Pg.118]    [Pg.145]    [Pg.269]    [Pg.248]   


SEARCH



Microreactor polymer

Microreactor polymer

© 2024 chempedia.info