Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer compressive strength

Density and polymer composition have a large effect on compressive strength and modulus (Fig. 3). The dependence of compressive properties on cell size has been discussed (22). The cell shape or geometry has also been shown important in determining the compressive properties (22,59,60,153,154). In fact, the foam cell stmcture is controlled in some cases to optimize certain physical properties of rigid cellular polymers. [Pg.412]

There has been some recent interest in polymers containing very small proportions (<2000 ppm) of a second comonomer. These can interfere with crystallisation and the resulting products are claimed to have improved compression strength, electrical insulation properties, weldability and transparency compared with the unmodified homopolymers. [Pg.367]

In the 1990s this approach became more common in order to ensure sufficient compressive strength with the trend to lower bulk densities. Furthermore the proportion of SAN to polyol has been increased to about 40%. This may lead to serious stability problems and care must be taken to control the size and distribution of the particles and prevent agglomeration. Polymer polyols using polystyrene as the polymer component have recently become available (Postech-Shell) and are claimed to exhibit good stability, low viscosity and less discolouration as well as providing price advantages. [Pg.796]

Vashkevitch Sychev (1982) have identified the main reaction product of the cement-forming reaction between copper(II) oxide and phosphoric acid as Cu3(P04)2. SHjO. The addition of polymers - poly(vinyl acetate) and latex - was found to inhibit the reaction and to reduce the compressive strength of these cements. However, impact strength and water resistance were improved. [Pg.221]

The brittle behaviour of the silica aerogel remains upon the introduction of TMS-modihed PNPs. However, even a low polymer content promotes a clear improvement of the mechanical properties of the material Young s modulus increases and the maximum compression strength and the corresponding strain become three to five times higher. Furthermore, the improvement in mechanical behaviour is noticeable... [Pg.170]

Phosphate-polymer control, in industrial water treatment, 26 132-133 Phosphate recognition, 16 794 Phosphate refractory dental dies, compressive strength, 8 289t Phosphate rock, 11 119, 120 minerals in, 19 5, 14 recovery of fluoride from, 14 12-13 U.S. imports for consumption of, 19 15t U.S. production of, 19 17 Phosphates, 18 814-863 19 19. See also Phosphate Polyphosphates aluminum acid, 18 839 ammonium, 11 487 18 835-836 analysis of, 18 851-852 calcium, 18 836-839 condensed, 18 841-852 crystalline, 18 839 dispersants, 8 710t economic aspects of, 18 859-860... [Pg.696]

CNF is an industrially produced derivative of carbon formed by the decomposition and graphitization of rich organic carbon polymers (Fig. 14.3). The most common precursor is polyacrylonitrile (PAN), as it yields high tensile and compressive strength fibers that have high resistance to corrosion, creep and fatigue. For these reasons, the fibers are widely used in the automotive and aerospace industries [1], Carbon fiber is an important ingredient of carbon composite materials, which are used in fuel cell construction, particularly in gas-diffusion layers where the fibers are woven to form a type of carbon cloth. [Pg.360]

Bradley, W.L. (1990). The effeet of resin toughness on delamination toughness and post-impact compression strength. In Proc. "Benihana" Intern. Symp. How to improve the toughness of polymers and composites-toughness, fracture and fatigue of polymers and composites, Yamagata. Japan, pp. 221-230. [Pg.360]

Surfactants enable the polymer particles to disperse effectively without coagulation in the mortar and concrete. Thus, mechanical and chemical stabilities of latexes are improved with an increase in the content of the surfactants selected as stabilizers. An excess of surfactant, however, may have an adverse effect on the strength because of the reduced latex film strength, the delayed cement hydration and excess air entrainment. Consequently, the latexes used as cement modifiers should have an optimum surfactant content (from 5 to 30% of the weight of total solids) to provide adequate strength. Suitable antifoamers are usually added to the latexes to prevent excess air entrainment increased dosages causes a drastic reduction in the air content and a concurrent increase in compressive strength [87, 92-94]. [Pg.348]

Such effects increase with an increase in the polymer content or the polymer-cement ratio (the weight ratio of total solids in a polymer latex to the amount of cement in a latex-modified mortar or concrete mixture). However, at levels exceeding 20% by weight of the cement in the mixture, excessive air entrainment and discontinuities form in the monolithic network structure, resulting in a reduction of compressive strength and modulus [87, 94, 95]. [Pg.352]

Properties of composites obtained by template poly condensation of urea and formaldehyde in the presence of poly(acrylic acid) were described by Papisov et al. Products of template polycondensation obtained for 1 1 ratio of template to monomers are typical glasses, but elastic deformation up to 50% at 90°C is quite remarkable. This behavior is quite different from composites polyacrylic acid-urea-formaldehyde polymer obtained by conventional methods. Introduction of polyacrylic acid to the reacting system of urea-formaldehyde, even in a very small quantity (2-5%) leads to fibrilization of the product structure. Materials obtained have a high compressive strength (30-100 kg/cm ). Further polycondensation of the excess of urea and formaldehyde results in fibrillar structure composites. Structure and properties of such composites can be widely varied by changes in initial composition and reaction conditions. [Pg.130]

Although glass spheres are classified as nonreinforcing fillers, the addition of 40 g of these spheres to 60 g of nylon 66 increases the flexural modulus, the compressive strength, and the melt index of the polymer. The tensile strength, the impact strength, the creep resistance, and the elongation of these composites are less than those of the unfilled nylon 66. [Pg.123]


See other pages where Polymer compressive strength is mentioned: [Pg.1217]    [Pg.1218]    [Pg.1219]    [Pg.1217]    [Pg.1218]    [Pg.1219]    [Pg.412]    [Pg.413]    [Pg.67]    [Pg.308]    [Pg.228]    [Pg.527]    [Pg.6]    [Pg.1193]    [Pg.54]    [Pg.124]    [Pg.115]    [Pg.82]    [Pg.1049]    [Pg.339]    [Pg.777]    [Pg.7]    [Pg.408]    [Pg.13]    [Pg.46]    [Pg.102]    [Pg.198]    [Pg.326]    [Pg.302]    [Pg.86]    [Pg.241]    [Pg.72]    [Pg.137]    [Pg.356]    [Pg.357]    [Pg.101]    [Pg.18]    [Pg.45]    [Pg.196]   
See also in sourсe #XX -- [ Pg.92 , Pg.93 , Pg.278 ]




SEARCH



Compressive polymer

Strength compression

Strength polymers

© 2024 chempedia.info