Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonate mechanisms

The composition of an optoelectronic memory card (eg. Laser Card of Drexler Technology Corp.) (162) is outlined in Figure 21 (163). Primary elements are polycarbonate foils with thicknesses of 250 to 400 )Tm, respectively, that are employed because of their high operating temperature and their good mechanical, optical, and dielectric characteristics. The OMC can be used as a ROM or a WORM media. Both possibiUties of information deposition can be used separately or in combination. [Pg.154]

Structure and Crystallinity. The mechanical—optical properties of polycarbonates are those common to amorphous polymers. The polymer may be crystallized to some degree by prolonged heating at elevated temperature (8 d at 180°C) (16), or by immersion ia acetone (qv). Powdered amorphous powder appears to dissolve partially ia acetone, initially becoming sticky, then hardening and becoming much less soluble as it crystallizes. Enhanced crystallization of polycarbonate can also be caused by the presence of sodium phenoxide end groups (17). [Pg.280]

Blends with good mechanical properties can be made from DMPPO and polymers with which DMPPO is incompatible if an appropriate additive, compatibilizing agent, or treatment is used to increase the dispersion of the two phases. Such blends include mixtures of DMPPO with nylon, polycarbonate, polyester, ABS, and poly(phenylene sulfide). [Pg.330]

Table 20.3 Comparison of mechanical properties of typical commercial bis-phenol A polycarbonates... Table 20.3 Comparison of mechanical properties of typical commercial bis-phenol A polycarbonates...
Typical mechanical properties for bis-phenol A polycarbonates are listed in Table 20.3. [Pg.569]

The polymers are extensively used in telecommunications equipment, a major use being in telephone switching mechanisms. Polycarbonates now dominate the... [Pg.576]

Friedrich et al. also used XPS to investigate the mechanisms responsible for adhesion between evaporated metal films and polymer substrates [28]. They suggested that the products formed at the metal/polymer interface were determined by redox reactions occurring between the metal and polymer. In particular, it was shown that carbonyl groups in polymers could react with chromium. Thus, a layer of chromium that was 0.4 nm in thickness decreased the carbonyl content on the surface of polyethylene terephthalate (PET) or polymethylmethacrylate (PMMA) by about 8% but decreased the carbonyl content on the surface of polycarbonate (PC) by 77%. The C(ls) and 0(ls) spectra of PC before and after evaporation of chromium onto the surface are shown in Fig. 22. Before evaporation of chromium, the C(ls) spectra consisted of two components near 284.6 eV that were assigned to carbon atoms in the benzene rings and in the methyl groups. Two additional... [Pg.273]

Hydrolysis studies compared a polycarbonate urethane with a poly(tetramethyl-ene adipate) urethane and a polyether urethane based on PTMEG. After 2 weeks in 80°C water, the polycarbonate urethane had the best retention of tensile properties [92], Polycarbonates can hydrolyze, although the mechanism of hydrolysis is not acid-catalyzed, as in the case of the polyesters. Polycarbonate polyurethanes have better hydrolysis resistance than do standard adipate polyurethanes, by virtue of the highest retention of tensile properties. It is interesting to note in the study that the PTMEG-based urethanes, renowned for excellent hydrolysis resistance, had lower retention of physical properties than did the polycarbonate urethanes. [Pg.808]

ABS has a specific gravity of 1.03 to 1.06 and a tensile strength in the range of 6 to 7.5 X 10 psi. These polymers are tough plastics with outstanding mechanical properties. A wide variety of ABS modifications are available with heat resistance comparable to or better than polysulfones and polycarbonates (noted later in this section). Another outstanding property of ABS is its ability to be alloyed with other thermoplastics for improved properties. For example, ABS is alloyed with rigid PVC for a product with better flame resistance. [Pg.336]

Recovery is the strain response that occurs upon the removal of a stress or strain. The mechanics of the recovery process are illustrated in Fig. 2-34, using an idealized viscoelastic model. The extent of recovery is a function of the load s duration and time after load or strain release. In the example of recovery behavior shown in Fig. 2-34 for a polycarbonate at 23°C (73°F), samples were held under sustained stress for 1,000 hours, and then the stress was removed for the same amount of time. The creep and recovery strain measured for the duration of the test provided several significant points. [Pg.73]

Polycarbonate Good/Excellent Yellows. Mechanical properties not greatly... [Pg.405]

Polycarbonate (PC) serves as a convenient example for both, the direct determination of the distribution of correlation times and the close connection of localized motions and mechanical properties. This material shows a pronounced P-relaxation in the glassy state, but the nature of the corresponding motional mechanism was not clear 76 80> before the advent of advanced NMR techniques. Meanwhile it has been shown both from 2H NMR 17) and later from 13C NMRSI) that only the phenyl groups exhibit major mobility, consisting in 180° flips augmented by substantial small angle fluctuations about the same axis, reaching an rms amplitude of 35° at 380 K, for details see Ref. 17). [Pg.44]

Other reports on the morphology and mechanical behavior of organosiloxane containing copolymeric systems include polyurethanes 201 202), aliphatic 185, 86) and aromatic117,195> polyesters, polycarbonates 233 236>, polyhydroxyethers69,311, siloxane zwitterionomers 294 295) and epoxy networks 115>. All of these systems display two phase morphologies and composition dependent mechanical properties, as expected. [Pg.68]


See other pages where Polycarbonate mechanisms is mentioned: [Pg.139]    [Pg.140]    [Pg.150]    [Pg.76]    [Pg.148]    [Pg.151]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.281]    [Pg.283]    [Pg.469]    [Pg.11]    [Pg.480]    [Pg.333]    [Pg.350]    [Pg.134]    [Pg.47]    [Pg.146]    [Pg.164]    [Pg.591]    [Pg.591]    [Pg.324]    [Pg.951]    [Pg.41]    [Pg.432]    [Pg.23]    [Pg.25]    [Pg.18]    [Pg.45]    [Pg.207]    [Pg.530]    [Pg.617]    [Pg.73]    [Pg.36]    [Pg.556]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Biodegradation mechanism of polycarbonates and polyethers

Engineering Mechanics Research polycarbonates

Mechanical Properties of Polycarbonate

Polycarbonate Dynamic mechanical properties

Polycarbonate degradation mechanisms

Polycarbonate mechanical

Polycarbonate mechanical

Polycarbonate mechanical constants

Polycarbonate mechanical properties

Polycarbonate mechanical strength

© 2024 chempedia.info