Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylates processes

Typical processing data is given in Table 6.10. Polyacrylate processing is similar to PC but with higher material temperatures (330-370 °C) and higher melt viscosity. [Pg.90]

Both side-chain and main-chain scission products are observed when polyacrylates are irradiated with gamma radiation (60). The nature of the alkyl side group affects the observed ratio of these two processes (61,62). [Pg.164]

The soapless seeded emulsion copolymerization method was used for producing uniform microspheres prepared by the copolymerization of styrene with polar, functional monomers [115-117]. In this series, polysty-rene-polymethacrylic acid (PS/PMAAc), poly sty rene-polymethylmethacrylate-polymethacrylic acid (PS/ PMMA/PMAAc), polystyrene-polyhydroxyethylmeth-acrylate (PS/PHEMA), and polystyrene-polyacrylic acid (PS/PAAc) uniform copolymer microspheres were synthesized by applying a multistage soapless emulsion polymerization process. The composition and the average size of the uniform copolymer latices prepared by multistage soapless emulsion copolymerization are given in Table 11. [Pg.217]

As revealed by IR-spectroscopy, the attachment of the polymer proceeds via acylation of aminopropyls absorbances of both amides (1650 cm-1) and esters (1740 cm-1) contribute to the spectrum of polyacrylate-coated aminopropyl-Aerosil (specific surface area 175 m2/g) [55], During the reaction, the accumulation of p-nitrophenyl ester groups in the support is accompanied by the liberation of p-nitrophenol into the contacting solution. Thus, the evaluation of the conformational state of adsorbing macromolecules can be performed by the simultaneous study of both processes by UV-spectroscopy as shown in Fig. 7. Apparently, at... [Pg.155]

For the characterization of Langmuir films, Fulda and coworkers [75-77] used anionic and cationic core-shell particles prepared by emulsifier-free emulsion polymerization. These particles have several advantages over those used in early publications First, the particles do not contain any stabihzer or emulsifier, which is eventually desorbed upon spreading and disturbs the formation of a particle monolayer at the air-water interface. Second, the preparation is a one-step process leading directly to monodisperse particles 0.2-0.5 jim in diameter. Third, the nature of the shell can be easily varied by using different hydrophilic comonomers. In Table 1, the particles and their characteristic properties are hsted. Most of the studies were carried out using anionic particles with polystyrene as core material and polyacrylic acid in the shell. [Pg.218]

Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974). Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974).
Polycondensation pol5mers, like polyesters or polyamides, are obtained by condensation reactions of monomers, which entail elimination of small molecules (e.g. water or a hydrogen halide), usually under acid/ base catalysis conditions. Polyolefins and polyacrylates are typical polyaddition products, which can be obtained by radical, ionic and transition metal catalyzed polymerization. The process usually requires an initiator (a radical precursor, a salt, electromagnetic radiation) or a catalyst (a transition metal). Cross-linked polyaddition pol5mers have been almost exclusively used so far as catalytic supports, in academic research, with few exceptions (for examples of metal catalysts on polyamides see Ref. [95-98]). [Pg.209]

Various additives show considerable extraction resistance, such as impact modifiers (polyacrylates and polyblends PVC/EVA, PVC/ABS, etc.), highpolymeric processing aids (PMMA-based), elastomers as high-MW plasticisers, reactive flame retardants (e.g. tetrabromobisphenol-A, tetrabromophthalic anhydride, tetrabromophthalate diol, dibromostyrene). Direct measurement of additives by UV and IR spectroscopy of moulded films is particularly useful in analysing for additives that are difficult to extract, although in such cases the calibration of standards may present a problem and interferences from other additives are possible. [Pg.140]

These enhance the appearance of the polymer, but play no role in the chemical, physical or mechanical properties of the base polymer. The main difficulty is that if the finished assembled article is made from different grades of the same polymer or from different polymers, then, particularly with different polymers, the combination must be uniform. For example, bathroom suites are often made from different materials, e.g., ceramics, baths (polyacrylates), trimmings (PVC, PP). The colorants therefore have to undergo different processing conditions and it is essential that in the final products the colour is the same. [Pg.115]

Since these reports, a number of new approaches based on vinyl monomers and various initiating systems have been explored to yield hyperbranched polymers such as, poly(4-acetylstyrene) [26], poly(vinyl ether) [27] and polyacrylates [28], In view of the fact that free radical polymerizations are most widely used in industrial polymerization processes the development of these procedures for vinyl monomers has opened a very important area for hyperbranched polymers. [Pg.205]

Ershov BG, Henglein A (1998) Time-resolved investigation of early processes in the reduction of Ag+ on polyacrylate in aqueous solution. J Phys Chem B 102 10667-10671... [Pg.329]

Farther growth of the polymeric chain proceeds in the nsnal manner. Compared to the polymeric materials obtained by conventional methods, the mechanochemically synthesized polyacryl and polymethacrylamides have lower molecular weights (Simonescu et al. 1983). Acrylonitrile, styrene, e-caprolactam, and isoprene as well as aryl and methacrylamides have special optimal duration of the polymerization on grinding (Oprea and Popa 1980). In the case of the aryl and methacrylamides, the polymerization proceeds slowly, usually between 24 and 72 h. After that, some acceleration takes place and the process is completed in 96 h (in total). [Pg.284]

Fig. 43 Schematic representation of the adsorption process of pyrene labeled polyacrylic acid on alumina at different pH... Fig. 43 Schematic representation of the adsorption process of pyrene labeled polyacrylic acid on alumina at different pH...
The aim of the modern emnlsion painting process is to deposit a nniform, tongh polymer layer on a snbstrate. At first sight it may be thonght that simply dissolving the polymer (typically polyacrylic) in a snitable non-aqneons solvent wonld be snfficient. However, polymer solntions of the reqnired concentrations ( 50%) are very viscons and organic solvents are not acceptable for the home decoration market as well as being expensive. [Pg.81]


See other pages where Polyacrylates processes is mentioned: [Pg.143]    [Pg.167]    [Pg.459]    [Pg.151]    [Pg.194]    [Pg.152]    [Pg.278]    [Pg.218]    [Pg.508]    [Pg.611]    [Pg.166]    [Pg.866]    [Pg.182]    [Pg.432]    [Pg.129]    [Pg.247]    [Pg.74]    [Pg.44]    [Pg.132]    [Pg.180]    [Pg.181]    [Pg.195]    [Pg.196]    [Pg.188]    [Pg.267]    [Pg.350]    [Pg.19]    [Pg.5]    [Pg.307]    [Pg.116]    [Pg.38]    [Pg.17]    [Pg.676]    [Pg.40]    [Pg.103]    [Pg.170]   
See also in sourсe #XX -- [ Pg.382 , Pg.383 ]




SEARCH



Polyacrylate

Polyacrylate processing data

Polyacrylates

Polyacrylates processing conditions

Polyacrylic

Polyacrylics

© 2024 chempedia.info