Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly spherulite

Figure 4.12 Spherulites of poly( 1-propylene oxide) observed through crossed Polaroid filters by optical microscopy. See text for significance of Maltese cross and banding in these images. [From J. H. MaGill, Treatise on Materials Science and Technology, Vol. lOA, J. M. Schultz (Ed.), Academic, New York, 1977, with permission.]... Figure 4.12 Spherulites of poly( 1-propylene oxide) observed through crossed Polaroid filters by optical microscopy. See text for significance of Maltese cross and banding in these images. [From J. H. MaGill, Treatise on Materials Science and Technology, Vol. lOA, J. M. Schultz (Ed.), Academic, New York, 1977, with permission.]...
Figure 6 Spherulites of isotactic poly-l-butene (a, during growth) and of polyethylene (b, after completion) by optical microscopy (OM) under crossed polars. Reproduced from Ref. [3] with permission of John Wiley Sons, Inc. Figure 6 Spherulites of isotactic poly-l-butene (a, during growth) and of polyethylene (b, after completion) by optical microscopy (OM) under crossed polars. Reproduced from Ref. [3] with permission of John Wiley Sons, Inc.
Figure 11 Left Spherulites of a Ziegler-Natta isotactic poly(propylene) with Mw = 271,500 g/mol and mmmm — 0.95, isothermally crystallized at 148°C. Right Banded spherulites of a linear polyethylene with Mw = 53,600 g/mol slowly cooled from the melt. Figure 11 Left Spherulites of a Ziegler-Natta isotactic poly(propylene) with Mw = 271,500 g/mol and mmmm — 0.95, isothermally crystallized at 148°C. Right Banded spherulites of a linear polyethylene with Mw = 53,600 g/mol slowly cooled from the melt.
Recent developments have allowed atomic force microscopic (AFM) studies to follow the course of spherulite development and the internal lamellar structures as the spherulite evolves [206-209]. The major steps in spherulite formation were followed by AFM for poly(bisphenol) A octane ether [210,211] and more recently, as seen in the example of Figure 12 for a propylene 1-hexene copolymer [212] with 20 mol% comonomer. Accommodation of significant content of 1-hexene in the lattice allows formation and propagation of sheaf-like lamellar structure in this copolymer. The onset of sheave formation is clearly discerned in the micrographs of Figure 12 after crystallization for 10 h. Branching and development of the sheave are shown at later times. The direct observation of sheave and spherulitic formation by AFM supports the major features that have been deduced from transmission electron and optical microscopy. The fibrous internal spherulite structure could be directly observed by AFM. [Pg.275]

Figure 17 Isothermal melting of Ziegler-Natta isotactic poly(propylene). (a) Spherulites with mixed birefringence at Tc = 148°C. The top middle figure displays the melting for the same thermal history, (b) Subsequent to crystallization, the temperature was raised to 171°C spherulites acquire negative birefringence, (c), (d) and (e) Isothermal melting at 171°C for 80, 200 and 300 min, respectively. Reproduced with permission from W.T. Huang, Dissertation, Florida State University, 2005. (See Color Plate Section at the end of this book.)... Figure 17 Isothermal melting of Ziegler-Natta isotactic poly(propylene). (a) Spherulites with mixed birefringence at Tc = 148°C. The top middle figure displays the melting for the same thermal history, (b) Subsequent to crystallization, the temperature was raised to 171°C spherulites acquire negative birefringence, (c), (d) and (e) Isothermal melting at 171°C for 80, 200 and 300 min, respectively. Reproduced with permission from W.T. Huang, Dissertation, Florida State University, 2005. (See Color Plate Section at the end of this book.)...
Tant, M. R. and Culberson, W. T., Effect of molecular weight on spherulite growth rate of poly(ethylene terephthalate) via real-time small angle light scattering, Polym. Eng. Sci., 33, 1152-1156 (1993). [Pg.190]

Crystalline polymers exhibit the following basic properties They are opaque as long as the size of the crystallites or spherulites, respectively, lies above the wavelength of light. Their solubility is restricted to few organic solvents at elevated temperature. The following crystalline polymers have attained technical importance as thermoplastic materials polyethylene, polypropylene, aliphatic polyamides, aliphatic/aromatic polyamides, aliphatic/aromatic polyesters, poly-oxymethylene, polytetrafluoroethylene, poly(phenylene sulfide), poly(arylene ether ketone)s. [Pg.28]

Carr, S. H., Geil, P. H., Baer, E. The development of spherulites from structural units in glassy poly(bisphenol-A-carbonate). J. Macromol. Sci.-Phys. B2,13-28 (1968). [Pg.166]

Andrews76 gave results of the work of Reed and Martin on cis-polyisoprene specimens crystallized from a strained cross linked melt and on solid state polymerized poly-oxymethylene respectively, explaining the results by simple two phase models. He also summarized the studies of Patel and Philips775 on spherulitic polyethylene which showed that the Young s modulus increased as a function of crystallite radius by a factor of 3 up to a radius of about 13 n and then decreased on further increasing spherulite size. [Pg.110]

Studies have been conducted on poly (tetramethylene oxide )-poly-(tetramethylene terephthalate) -segmented copolymers that are identical in all respects except for their crystalline superstructure (66,67,68). Four types of structures—type I, II, and III spherulites (with their major optical axis at an angle of 45°, 90°, and 0° to the radial direction, respectively), and no spherulitic structure—were produced in one segmented polymer by varying the sample-preparation method. Figures 10 and 11 show the stress-strain and IR dichroism results for these samples, respec-... [Pg.29]

The topographical AFM images of poly(ethylene vinyl acetate) films with various thicknesses ranging from 20 to 460 nm are shown in Fig. 33 [80]. The bulk-like spherulites are seen in the 460-nm film. In thick films, the surface morphology of the film is very similar to the bulk. As the thickness decreases to 152 nm, more small spherulites are observed. This is possibly due to the... [Pg.33]

Significant variation of the ultimate mechanical properties of poly(hexamethylene sehacate), HMS, is possible by con-trol of thermal history without significant variation of percent crystallinity. Both banded and unbanded spherulite morphology samples obtained by crystallization at 52°C and 60°C respectively fracture in a brittle fashion at a strain of r O.Ol in./in. An ice-water-quenched specimen does not fracture after a strain of 1.40 in./in. The difference in deformation behavior is interpreted as variation of the population of tie molecules or tie fibrils and variation of crystalline morphological dimensions. The deformation process transforms the appearance of the quenched sample from a creamy white opaque color to a translucent material. Additional experiments are suggested which should define the morphological characteristics that result in variation of the mechanical properties from ductile to brittle behavior. [Pg.117]

The effects of morphology (i.e., crystallization rate) (6,7, 8) on the mechanical properties of semicrystalline polymers has been studied without observation of a transition from ductile to brittle failure behavior in unoriented samples of similar crystallinity. Often variations in ductlity are observed as spherulite size is varied, but this is normally confounded with sizable changes in percent crystallinity. This report demonstrates that a semicrystalline polymer, poly(hexamethylene sebacate) (HMS) may exhibit either ductile or brittle behavior dependent upon thermal history in a manner not directly related to volume relaxation or percent crystallinity. [Pg.118]

In conclusion, the deformation behavior of poly(hexamethylene sebacate), HMS, can be altered from ductile to brittle by variation of crystallization conditions without significant variation of percent crystallinity. Banded and nonbanded spherulitic morphology samples crystallized at 52°C and 60°C fail at a strain of 0.01 in./in. whereas ice-water-quenched HMS does not fail at a strain of 1.40 in./in. The change in deformation behavior is attributed primarily to an increased population of tie molecules and/or tie fibrils with decreasing crystallization temperature which is related to variation of lamellar and spherulitic dimensions. This ductile-brittle transformation is not caused by volume or enthalpy relaxation as reported for glassy amorphous polymers. Nor is a series of molecular weights, temperatures, strain rates, etc. required to observe this transition. Also, the quenched HMS is transformed from the normal creamy white opaque appearance of HMS to a translucent appearance after deformation. [Pg.126]


See other pages where Poly spherulite is mentioned: [Pg.337]    [Pg.121]    [Pg.73]    [Pg.384]    [Pg.274]    [Pg.275]    [Pg.281]    [Pg.757]    [Pg.185]    [Pg.57]    [Pg.95]    [Pg.181]    [Pg.189]    [Pg.189]    [Pg.139]    [Pg.337]    [Pg.434]    [Pg.451]    [Pg.14]    [Pg.48]    [Pg.17]    [Pg.124]    [Pg.90]    [Pg.253]    [Pg.188]    [Pg.682]    [Pg.19]    [Pg.576]    [Pg.3]    [Pg.5]    [Pg.29]    [Pg.80]    [Pg.100]    [Pg.616]    [Pg.261]   
See also in sourсe #XX -- [ Pg.188 ]

See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Poly , spherulitic

Poly , spherulitic

Poly , spherulitic structure

Poly blends spherulite growth rates

Poly blends spherulitic growth

Poly block copolymers spherulites

Poly fi -hydroxy butryate) spherulite growth rates

Poly maximum spherulite growth rat

Poly spherulite diameter

Poly spherulite growth kinetics

Poly spherulite growth rates

Poly spherulite nucleation rate

Poly spherulite radius

Poly spherulites

Poly spherulites

Poly spherulitic growth rates

Poly spherulitic growth rates with

Radial spherulite growth rates poly

Spherulite

Spherulite morphology poly

Spherulites

Spherulites of poly

Spherulitic

© 2024 chempedia.info