Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly polar solvents

N-Alkylpyrroles may be obtained by the Knorr synthesis or by the reaction of the pyrrolyl metallates, ie, Na, K, and Tl, with alkyl haUdes such as iodomethane, eg, 1-methylpyrrole [96-54-8]. Alkylation of pyrroles at the other ring positions can be carried out under mild conditions with allyhc or hensylic hahdes or under more stringent conditions (100—150°C) with CH I. However, unless most of the other ring positions are blocked, poly alkylation and polymerisation tend to occur. N-Alkylation of pyrroles is favored by polar solvents and weakly coordinating cations (Na", K" ). More strongly coordinating cations (Li", Mg " ) lead to more C-alkylation. [Pg.357]

Solubility. Poly(vinyl alcohol) is only soluble in highly polar solvents, such as water, dimethyl sulfoxide, acetamide, glycols, and dimethylformamide. The solubiUty in water is a function of degree of polymerization (DP) and hydrolysis (Fig. 4). Fully hydrolyzed poly(vinyl alcohol) is only completely soluble in hot to boiling water. However, once in solution, it remains soluble even at room temperature. Partially hydrolyzed grades are soluble at room temperature, although grades with a hydrolysis of 70—80% are only soluble at water temperatures of 10—40°C. Above 40°C, the solution first becomes cloudy (cloud point), followed by precipitation of poly(vinyl alcohol). [Pg.476]

Paine et al. [99] tried different stabilizers [i.e., hydroxy propylcellulose, poly(N-vinylpyrollidone), and poly(acrylic acid)] in the dispersion polymerization of styrene initiated with AIBN in the ethanol medium. The direct observation of the stained thin sections of the particles by transmission electron microscopy showed the existence of stabilizer layer in 10-20 nm thickness on the surface of the polystyrene particles. When the polystyrene latexes were dissolved in dioxane and precipitated with methanol, new latex particles with a similar surface stabilizer morphology were obtained. These results supported the grafting mechanism of stabilization during dispersion polymerization of styrene in polar solvents. [Pg.205]

Solvent polarity is also important in directing the reaction bath and the composition and orientation of the products. For example, the polymerization of butadiene with lithium in tetrahydrofuran (a polar solvent) gives a high 1,2 addition polymer. Polymerization of either butadiene or isoprene using lithium compounds in nonpolar solvent such as n-pentane produces a high cis-1,4 addition product. However, a higher cis-l,4-poly-isoprene isomer was obtained than when butadiene was used. This occurs because butadiene exists mainly in a transoid conformation at room temperature (a higher cisoid conformation is anticipated for isoprene) ... [Pg.308]

Poly(ether ether ketone), known as PEEK, is a crystalline high-temperature thermoplastic. It is produced by a step (condensation) process (see Chapter 2) in which 4,4-difluorobenzophenone is reacted with the anion of hydro-quinone. This reaction is carried out in a high boiling point polar solvent, such as A -cyclohexyl-2-pyrrolidone (1.13). [Pg.17]

HydTOX5 proline-derived polyesters are usually readily soluble in a variety of organic solvents (benzene, toluene, chloroform, dichloro-methane, carbon tetrachloride, tetrahydrofuran, dimethylformamide, etc.) As expected, the solubility in hydrophobic solvents increased with increasing chain length of the N protecting group, while the solubility in polar solvents decreased. For example, poly(N-hexanoyl-hydroxyproline ester) is slightly soluble in ether but easily soluble in acetonitrile, while poly(N-palmitoylhydroxyproline ester) is readily soluble in ether but virtually insoluble in acetonitrile. [Pg.205]

Methyl and ethyl methacrylate polymers, although extensively used in Industry, do not possess the solubility characteristics (low polarity) that would make them appropriate for use over traditional oil paintings and other organic-based museum objects that might be sensitive to polar solvents such as alcohols, ketones and esters. Poly(n-butyl methacrylate), offered as an artists varnish in the late 1930 s, did not become widely accepted in the war-disrupted decade that followed. Accordingly, early in 1951, our laboratory began a detailed study of the higher alkyl methacrylate polymers for potential use as picture varnishes (1). [Pg.183]

Hay et al.w,n have prepared high-molecular-weight a Bisphenol-A-derived poly(formal) (6) using a phase-transfer catalyst in DCM. A Bisphenol-AF-derived poly(formal) (7) is also synthesized by solution polycondensation of Bisphenol AF (1) with DCM in highly polar cosolvents in the presence of potassium hydroyxide (Scheme 3).12 Aprotic polar solvents such as A/W-dimethylformamide... [Pg.132]

Four poly(ether ketone)s obtained from 2,2-bis[4-(4-fluorobenzoyl)-phenyl]-1,1,1,3,3,3-hexafluoropropane (9) or 2,2-bis[4-(4-fluorobenzoyl)-phenyl]propane (10) with Bisphenol AF (1) or Bisphenol A (4) are all soluble in chloroform, benzene, THF, and aprotic polar solvents such as DMF, DMAc, and NMP.15 Poly(ether ketone) from 9 and 1, which has the highest fluorine content, dissolves easily in ethyl acetate. [Pg.139]

The incorporation of fluorine atoms improves the solubility of aromatic condensation polymers without causing them to lose their high thermal stability and modifies the processability. Hexafluoroisopropylidene-unit-containing poly-(azomethine)s and copoly(azomethine)s are readily soluble in highly polar solvents such as DMAc, HMPA, and NMP, and they also dissolve completely in dichloromethane, chloroform, and THF, whereas poly(azomethine)s derived from 21 and 22 and having no fluorine atom are insoluble in these solvents.20 Accordingly, the solubility of aromatic poly(azomethine)s is remarkably improved by substituting isopropylidene units with fluorine atoms. [Pg.142]

Poly(benzimidazole)s possess excellent thermal stability, flame resistance, and outstanding chemical resistance. The solubility of hexafluoroisopropyli-dene-unit-containing poly(benzimidazole)s is remarkably improved.24 They are readily soluble in strong acids such as formic acid, concentrated sulfuric acid, and methanesulfonic acid and in aprotic polar solvents such as DMAc and NMP. The polymer from tetramine (23) is soluble even in m-cresol and pyridine. [Pg.146]

Bisphenol-AF-derived poly(aryloxydiphenylsilane) dissolves easily in a wide variety of organic solvents, including chlorinated and aromatic hydrocarbons, cyclic ethers, and aprotic polar solvents. [Pg.149]

Optically active benzene(poly)carboxamides and benzene(poly)carboxy-lates were used by Inoue and co-workers as sensitizers for the geometrical photoisomerization of (Z)-cyclooctene and (Z,Z)-cyclooctadienes in various solvents at different temperatures. Under energy-transfer conditions, enantiomeric excesses up to 64% ee in unpolar solvents like pentane were reported. The use of polar solvents diminished the product ee s due to the intervention of a free or solvent-separated radical ion pair generated through the electron transfer from the substrate to the excited chiral sensitizer (Scheme 58) [105-109]. [Pg.220]

The deflection temperature of poly(vinyl formal) is about 90°C. Because of the presence of residual hydroxyl groups, commercial poly(vinyl formal) has a water absorption of about 1%. Poly(vinyl formal) (Equation 6.67) has a Tg of about 105°C and is soluble in moderately polar solvents, such as acetone. [Pg.200]


See other pages where Poly polar solvents is mentioned: [Pg.18]    [Pg.221]    [Pg.123]    [Pg.170]    [Pg.328]    [Pg.269]    [Pg.360]    [Pg.522]    [Pg.376]    [Pg.513]    [Pg.1110]    [Pg.113]    [Pg.150]    [Pg.221]    [Pg.308]    [Pg.325]    [Pg.270]    [Pg.146]    [Pg.261]    [Pg.213]    [Pg.228]    [Pg.285]    [Pg.353]    [Pg.123]    [Pg.134]    [Pg.627]    [Pg.226]    [Pg.134]    [Pg.154]    [Pg.154]    [Pg.15]   
See also in sourсe #XX -- [ Pg.836 ]




SEARCH



Polar aprotic solvents poly 2-

Polar solvents

Polarity, solvent

Polarity/polarization solvent

Polarization solvent

Poly polarity

Solvent polar solvents

© 2024 chempedia.info