Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Light poly

A graphical method, proposed by Zimm (thus tenned the Zinnn plot), can be used to perfomi this double extrapolation to detemiine the molecular weight, the radius of gyration and the second virial coefficient. An example of a Zinnn plot is shown in figure Bl.9.6 where the light scattering data from a solution of poly... [Pg.1393]

Strauss and Williamst have studied coil dimensions of derivatives of poly(4-vinylpyridine) by light-scattering and viscosity measurements. The derivatives studied were poly(pyridinium) ions quaternized y% with n-dodecyl groups and (1 - y)% with ethyl groups. Experimental coil dimensions extrapolated to 0 conditions and expressed relative to the length of a freely rotating repeat unit are presented here for the molecules in two different environments ... [Pg.70]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Fig. 3. Chemistry of dichromated poly(vinyl alcohol) resist. Initially the dichromate ion absorbs light the light-activated species undergoes an... Fig. 3. Chemistry of dichromated poly(vinyl alcohol) resist. Initially the dichromate ion absorbs light the light-activated species undergoes an...
Fig. 4. Chemistry of poly(vinyl cinnamate) negative-acting resist. Initial light absorption by the photosensitizer is followed by energy transfer to produce a pendant cinnamate group in a triplet electronic state. This combines with a second cinnamate on another polymer chain, forming a polymer—polymer... Fig. 4. Chemistry of poly(vinyl cinnamate) negative-acting resist. Initial light absorption by the photosensitizer is followed by energy transfer to produce a pendant cinnamate group in a triplet electronic state. This combines with a second cinnamate on another polymer chain, forming a polymer—polymer...
Currently, almost all acetic acid produced commercially comes from acetaldehyde oxidation, methanol or methyl acetate carbonylation, or light hydrocarbon Hquid-phase oxidation. Comparatively small amounts are generated by butane Hquid-phase oxidation, direct ethanol oxidation, and synthesis gas. Large amounts of acetic acid are recycled industrially in the production of cellulose acetate, poly(vinyl alcohol), and aspirin and in a broad array of other... [Pg.66]

Polymer Applications. The reaction of sahcylaldehyde with poly(vinyl alcohol) to form an acetal has been used to provide dye receptor sites on poly(vinyl alcohol) fibers (89) and to improve the light stabihty of blend fibers from vinyl chloride resin and poly(vinyl alcohol) (90) (see Fibers, POLY(VINYL alcohol)). ... [Pg.508]

Materials. For holographic information storage, materials are required which alter their index of refraction locally by spotwise illumination with light. Suitable are photorefractive inorganic crystals, eg, LiNbO, BaTiO, LiTaO, and Bq2 i02Q. Also suitable are photorefractive ferroelectric polymers like poly(vinyhdene fluoride-i o-trifluorethylene) (PVDF/TFE). Preferably transparent polymers are used which contain approximately 10% of monomeric material (so-called photopolymers, photothermoplasts). These polymers additionally contain different initiators, photoinitiators, and photosensitizers. [Pg.154]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

The chemical resistance and excellent light stabiUty of poly(methyl methacrylate) compared to two other transparent plastics is illustrated in Table 5 (25). Methacrylates readily depolymerize with high conversion, ie, 95%, at >300° C (1,26). Methyl methacrylate monomer can be obtained in high yield from mixed polymer materials, ie, scrap. [Pg.262]

The diacid components for the manufacture of poly(y -phenyleneisophthalamide) and poly(p-phenyleneterephthalamide) are produced by one of two processes. In the first, the diacid chlorides are produced by the oxidation of / -xylene [108-38-3] or -xylene [106-42-3] followed by the reaction of the diacids with phosgene [75-44-5]. In the second, process m- or -xylene reacts with chlorine initiated by ultraviolet light to form the m- or Nhexachloroxylene. This then reacts with the respective aromatic dicarboxyUc acid to form the diacid chloride. [Pg.239]

Automotive appHcations account for about 116,000 t of woddwide consumption aimuaHy, with appHcations for various components including headlamp assembHes, interior instmment panels, bumpers, etc. Many automotive appHcations use blends of polycarbonate with acrylonitrile—butadiene—styrene (ABS) or with poly(butylene terephthalate) (PBT) (see Acrylonitrile polymers). Both large and smaH appHances also account for large markets for polycarbonate. Consumption is about 54,000 t aimuaHy. Polycarbonate is attractive to use in light appHances, including houseware items and power tools, because of its heat resistance and good electrical properties, combined with superior impact resistance. [Pg.285]

Poly Pross light/dark Disco Inc. 1.20 0.02 60 (chips) fatty acid blends... [Pg.245]


See other pages where Light poly is mentioned: [Pg.18]    [Pg.80]    [Pg.389]    [Pg.1126]    [Pg.2585]    [Pg.1012]    [Pg.240]    [Pg.251]    [Pg.400]    [Pg.373]    [Pg.72]    [Pg.163]    [Pg.28]    [Pg.68]    [Pg.72]    [Pg.256]    [Pg.254]    [Pg.261]    [Pg.261]    [Pg.265]    [Pg.430]    [Pg.15]    [Pg.426]    [Pg.429]    [Pg.432]    [Pg.407]    [Pg.416]    [Pg.492]    [Pg.116]    [Pg.149]    [Pg.343]    [Pg.343]    [Pg.411]    [Pg.434]    [Pg.451]    [Pg.429]    [Pg.429]    [Pg.509]   


SEARCH



Light emitting polymers Poly

Light emitting polymers poly thiophenes

Light poly based

Light-emitting conjugated polymers poly

Light-emitting polymer materials poly

Lightly crosslinked poly

Poly , blue light emitting

Poly , blue light emitting diodes

Poly , light stability

Poly blue light emitting polymers

Poly light-scattering studies

Poly polarized light micrograph

Poly polarized light microscope

© 2024 chempedia.info