Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly isoprene Sulfide

Examples of organometallic polymers containing both phosphorus atoms and transition metals in the backbone include polyferrocenylphosphines 8 (and the corresponding phosphine sulfides 9), which are accessible via the thermal ROP of phosphorus-bridged [1] ferrocenophanes [16,17]. Polymers of this type have been previously prepared by condensation routes and the catalytic potential of some of their transition metal derivatives has already been noted [18]. Living anionic ROP of phosphorus-bridged [l]ferrocenophanes has recently been demonstrated and provides a route to block copolymers such as 10 (PI = poly-isoprene) [19] ... [Pg.144]

Orientations in elongated mbbers are sometimes regular to the extent that there is local crystallization of individual chain segments (e.g., in natural rubber). X-ray diffraction patterns of such samples are very similar to those obtained from stretched fibers. The following synthetic polymers are of technical relevance as mbbers poly(acrylic ester)s, polybutadienes, polyisoprenes, polychloroprenes, butadiene/styrene copolymers, styrene/butadiene/styrene tri-block-copolymers (also hydrogenated), butadiene/acrylonitrile copolymers (also hydrogenated), ethylene/propylene co- and terpolymers (with non-conjugated dienes (e.g., ethylidene norbomene)), ethylene/vinyl acetate copolymers, ethyl-ene/methacrylic acid copolymers (ionomers), polyisobutylene (and copolymers with isoprene), chlorinated polyethylenes, chlorosulfonated polyethylenes, polyurethanes, silicones, poly(fluoro alkylene)s, poly(alkylene sulfide)s. [Pg.22]

Poly(1,4-frar7s-isoprene) Poly(trimethylene sulfide) Poly(3,3-dimethyloxetane) Poly(3,3-dimethylthietane) Poly(tetramethylene oxide) Poly(1,3-dioxolane) Poly(pentamethylene sulfide) Poly(thiodiethylene glycol) Poly(hexamethylene oxide) Poly(6-aminocaproamide)... [Pg.48]

Fig. 6.12 Plot of melting temperature against characteristic ratio for indicated polymers. (1) Polyethylene (2) i-poly(propylene) (3) i-poly(isopropyl acrylate) (4) s-poly(isopropyl acrylate) (5) i-poly(methyl methacrylate) (6) s-poly(methyl methacrylate) (7) poly(dimethyl siloxane) (8) poly(diethyl siloxane) (9) poly(dipropyl siloxane) (10) poly(cis-l,4-isoprene) (11) poly(trans-l,4-isoprene) (12) poly(cis-1,4-butadiene) (13) poly(trans-1,4-butadiene) (14) poly(caprolactone) (15) poly(propiolactone) (16) poly(pivalolactone) (17) poly(oxymethylene) (18) poly(ethylene oxide) (19) poly(trimethylene oxide) (20) poly(tetramethylene oxide) (21) poly(hexamethylene oxide) (22) poly(decamethylene oxide) (23) poly(hexamethylene adipamide) (24) poly(caprolaetam) (25) poly(ethylene terephthalate) (26) poly(ethylene sulfide) (27) poly(tetrafluoroethylene) (28) i-poly(styrene) (29) poly(acrylonitrile) (30) poly(l,3-dioxolane) (31) poly(l,3-dioxopane) (32) poly(l,3-dioxocane) (33) bisphenol A-poly(carbonate). Fig. 6.12 Plot of melting temperature against characteristic ratio for indicated polymers. (1) Polyethylene (2) i-poly(propylene) (3) i-poly(isopropyl acrylate) (4) s-poly(isopropyl acrylate) (5) i-poly(methyl methacrylate) (6) s-poly(methyl methacrylate) (7) poly(dimethyl siloxane) (8) poly(diethyl siloxane) (9) poly(dipropyl siloxane) (10) poly(cis-l,4-isoprene) (11) poly(trans-l,4-isoprene) (12) poly(cis-1,4-butadiene) (13) poly(trans-1,4-butadiene) (14) poly(caprolactone) (15) poly(propiolactone) (16) poly(pivalolactone) (17) poly(oxymethylene) (18) poly(ethylene oxide) (19) poly(trimethylene oxide) (20) poly(tetramethylene oxide) (21) poly(hexamethylene oxide) (22) poly(decamethylene oxide) (23) poly(hexamethylene adipamide) (24) poly(caprolaetam) (25) poly(ethylene terephthalate) (26) poly(ethylene sulfide) (27) poly(tetrafluoroethylene) (28) i-poly(styrene) (29) poly(acrylonitrile) (30) poly(l,3-dioxolane) (31) poly(l,3-dioxopane) (32) poly(l,3-dioxocane) (33) bisphenol A-poly(carbonate).
Poly(styrene)-/)/t)c -poly(isoprene)-ft/oci-poly(ethylene sulfide) ... [Pg.1906]

As a continuation of this work, various analogs of these triblock copolymers were synthesized, such as a-methylstyrene-b-isoprene-b-a-methylstyrene, a-methylstyrene-b-(propylene sulfide)-b-a-methylstyrene and a-methylstyrene-b-dimethylsiloxane-b-a-methylstyrene. All of these showed similar morphology and structure-property relations as the styrene-diene triblocks, as might have been expected. It was noteworthy, however, that when the polystyrene end blocks were replaced by poly-a-methylstyrene, there was a noticeable increase in modulus and tensile strength, at any given temperature. This was presumably due to the enhanced ability of the poly-a-methylstyrene domains to withstand greater stresses and higher temperatures,... [Pg.167]

Although not strictly the subject matter of this book, work is briefly reviewed next on the application of non mass spectrometric Py-GC methods in the determination of polymer structure. This information is inclnded in the hope, when necessary, that chemists will be able to adapt these methods by including a mass spectrometric detailed information on polymer structure acrylates [63, 105-107], rubbers [63, 108-110], PVC [63,111-115], aliphatic polyhydrazides [116], polyoxamides [116], polyamides [117], polyether imides [118], methacrylamide [119], aromatic aliphatic polyamides [117], polyurethanes [120], chitin graft poly(2-methyl 2-oxazolone) [121, 122], polyxylyl sulfide [123-126], epoxy resins [127], polyethylene oxalate [128], polytetrafluoroethylene [129], polyvinylidene chloride [129], polyepichlorohydrin, fluorinated ethylene-propylene copolymer [129], polyvinyl fluoride [129], polyvinylidene [129], fluoride [129], SBR copolymer [129] and styrene-isoprene copolymer [130]. [Pg.210]


See other pages where Poly isoprene Sulfide is mentioned: [Pg.30]    [Pg.23]    [Pg.139]    [Pg.873]    [Pg.8]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Poly isoprene

Poly sulfide

© 2024 chempedia.info