Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly fractions

Fig. XI-7. Volume fraction profile of 280,000-molecular-weight poly(ethylene oxide) adsorbed onto deuterated polystyrene latex at a surface density of 1.21 mg/m and suspended in D2O, from Ref. 70. Fig. XI-7. Volume fraction profile of 280,000-molecular-weight poly(ethylene oxide) adsorbed onto deuterated polystyrene latex at a surface density of 1.21 mg/m and suspended in D2O, from Ref. 70.
Fig. XV-1. Plots of t/CRT vs. C for a fractionated poly(methyl acrylate) polymer at the indicated temperatures in degrees Celsius. [From A. Takahashi, A. Yoshida, and M. Kawaguchi, Macromolecules, 15, 1196 (1982) (Ref. 1). Copyright 1982, American Chemical Society.]... Fig. XV-1. Plots of t/CRT vs. C for a fractionated poly(methyl acrylate) polymer at the indicated temperatures in degrees Celsius. [From A. Takahashi, A. Yoshida, and M. Kawaguchi, Macromolecules, 15, 1196 (1982) (Ref. 1). Copyright 1982, American Chemical Society.]...
The time-temperature superpositioning principle was applied f to the maximum in dielectric loss factors measured on poly(vinyl acetate). Data collected at different temperatures were shifted to match at Tg = 28 C. The shift factors for the frequency (in hertz) at the maximum were found to obey the WLF equation in the following form log co + 6.9 = [ 19.6(T -28)]/[42 (T - 28)]. Estimate the fractional free volume at Tg and a. for the free volume from these data. Recalling from Chap. 3 that the loss factor for the mechanical properties occurs at cor = 1, estimate the relaxation time for poly(vinyl acetate) at 40 and 28.5 C. [Pg.269]

The phenomena we discuss, phase separation and osmotic pressure, are developed with particular attention to their applications in polymer characterization. Phase separation can be used to fractionate poly disperse polymer specimens into samples in which the molecular weight distribution is more narrow. Osmostic pressure experiments can be used to provide absolute values for the number average molecular weight of a polymer. Alternative methods for both fractionation and molecular weight determination exist, but the methods discussed in this chapter occupy a place of prominence among the alternatives, both historically and in contemporary practice. [Pg.505]

If the poorer solvent is added incrementally to a system which is poly-disperse with respect to molecular weight, the phase separation affects molecules of larger n, while shorter chains are more uniformly distributed. These ideas constitute the basis for one method of polymer fractionation. We shall develop this topic in more detail in the next section. [Pg.535]

Poly(7-benzyl-L-glutamate) is known to possess a helical structure in certain solvents. As part of an investigationf of this molecule, a fractionated sample was examined in chloroform (CHCI3) and chloroform saturated ( 0.5%) with dimethyl formamide (DMF). The following results were obtained ... [Pg.708]

The majority of xylenes, which are mostly produced by catalytic reforming or petroleum fractions, ate used in motor gasoline (see Gasoline and other MOTORFUELs). The majority of the xylenes that are recovered for petrochemicals use are used to produce PX and OX. PX is the most important commercial isomer. Almost all of the PX is converted to terephthaUc acid and dimethylterephthalate, and then to poly(ethylene terephthalate) for ultimate use in fibers, films, and resins. [Pg.424]

Formaldehyde homopolymer is composed exclusively of repeating oxymethylene units and is described by the term poly oxymethylene (POM) [9002-81-7]. Commercially significant copolymers, for example [95327-43-8] have a minor fraction (typically less than 5 mol %) of alkyUdene or other units, derived from cycHc ethers or cycHc formals, distributed along the polymer chain. The occasional break in the oxymethylene sequences has significant ramifications for polymer stabilization. [Pg.56]

Ak2o has been iastmmental ia developiag a new process for the stereospecific synthesis of 1,4-cyclohexane diisocyanate [7517-76-2] (21). This process, based on the conversion of poly(ethylene terephthalate) [25038-59-9] circumvents the elaborate fractional crystallisation procedures required for the existing -phenylenediamine [108-45-2] approaches. The synthesis starts with poly(ethylene terephthalate) (PET) (32) or phthaUc acid, which is converted to the dimethyl ester and hydrogenated to yield the cyclohexane-based diester (33). Subsequent reaction of the ester with ammonia provides the desired bisamide (34). The synthesis of the amide is the key... [Pg.455]

The Eastman Chemical Company has pubHshed extensively in the patent Hterature (65—74) and the scientific Hterature (75—77) on processes for making poly(phenylene sulfide)- (9-(phenylene disulfide), and related copolymers. The Eastman process involves the reaction of elemental sulfur with Ndiiodobenzene to yield a phenylene sulfide polymer that also contains phenylene disulfide repeating units in the polymer. The fraction of repeating groups containing... [Pg.444]

The maximum rates of crystallisation of the more common crystalline copolymers occur at 80—120°C. In many cases, these copolymers have broad composition distributions containing both fractions of high VDC content that crystallise rapidly and other fractions that do not crystallise at all. Poly(vinyhdene chloride) probably crystallises at a maximum rate at 140—150°C, but the process is difficult to foUow because of severe polymer degradation. The copolymers may remain amorphous for a considerable period of time if quenched to room temperature. The induction time before the onset of crystallisation depends on both the type and amount of comonomer PVDC crystallises within minutes at 25°C. [Pg.432]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

Accurate information oa the size of the defoamer market is impossible to obtaia. There are too many types of materials and suppHers iavolved. Particularly for the more common oils and surfactants, defoaming is a very small part of their total usage, and no pubHc information is available on what fraction of manufacturers sales is ia the area of foam coatrol. Evea for more expeasive materials such as the poly(alkyleae oxide) block copolymers, there is ao way of distinguishing betweea their use as defoamers and other significant surfactant uses such as de-emulsifiers. [Pg.467]

The use of a catalytic quantity of alkah equivalent to only a small fraction of the acetate has the advantage that contamination of the poly(vinyl alcohol) with salts, which are difficult to remove, is minimized. A variant of the process is the use of a mixture of alcohol with the acetate ester produced by the alcoholysis as the alcoholyzing agent. This provides a means of controlling the completeness of removal of the acetate groups from the poly(vinyl acetate) (111). [Pg.383]

Sodium poly(a-L-glutamate). It was washed with acetone, dried, dissolved in water and ppted with isopropanol at 5°. Impurities and low molecular weight fractions were removed by dialysis of the aqueous solution for 50h, followed by ultrafiltration through a filter impermeable to polymers of molecular weights greater the 10. The polymer was recovered by freeze-drying. [Mori et al. J Chem Soc, Faraday Trans I 2583 1978.]... [Pg.475]

Whilst the Tg of poly(dimethylsiloxane) rubbers is reported to be as low as -123°C they do become stiff at about -60 to -80°C due to some crystallisation. Copolymerisation of the dimethyl intermediate with a small amount of a dichlorodiphenylsilane or, preferably, phenylmethyldichlorosilane, leads to an irregular structure and hence amorphous polymer which thus remains a rubber down to its Tg. Although this is higher than the Tg of the dimethylsiloxane it is lower than the so that the polymer remains rubbery down to a lower temperature (in some cases down to -100°C). The Tg does, however, increase steadily with the fraction of phenylsiloxane and eventually rises above that of the of the dimethylsilicone rubber. In practice the use of about 10% of phenyldichlorosilane is sufficient to inhibit crystallisation without causing an excess rise in the glass transition temperature. As with the polydimethylsilox-anes, most methylphenyl silicone rubbers also contain a small amount of vinyl groups. [Pg.833]

Wi is the weight fraction of the elastomer, W2 the tackifier, W3 a further compatible additive, such as an oil, and so forth, for the remaining components in the formulated PSA. Application of the Fox equation to the poly (/-butylstyrene) tackified natural rubber adhesive (cited above) gives a value of —11°C, in good agreement with the interpolated value of — 13°C. [Pg.476]

FIG. 5 Local concentration profiles around a hydroxyl group in poly(vinyl alcohol) of heavy atoms in a (1 1) water/ethanol mixture A = OW water oxygen, A = OE ethanol oxygen, A = CE ethanol carbon. The local atomic fractions are defined as = a( )/ ZIb where a( ) is average number of atoms... [Pg.494]

A SEC material should be hydrophilic if it is to be used for biological applications. One such material, introduced by PolyLC in 1990 (8), is silica with a covalently attached coating of poly(2-hydroxyethyl aspartamide) the trade name is PolyHYDROXYETHYL Aspartamide (PolyHEA). This material was evaluated for SEC of polypeptides by P.C. Andrews (University of Michigan) and worked well for the purpose (Fig. 8.1). Because formic acid is a good solvent for polypeptides, Dr. Andrews tried a mobile phase of 50 mM formic acid. The result was a dramatic shift to a lower fractionation range for both Vq and V, (Fig. 8.2) to the point that V, was defined by the elution position of water. [Pg.250]

In reactions at the sulfur atom of a sulfinate ion to form a sulfone, of a sulfoxide to form R3S+—0, or of bisulfite ion to form a sulfonic acid, the fractionally positive sulfur becomes more positively charged in the poly-ionic transition states. Definitive experimental evidence... [Pg.176]

Figure 12.5 Effect of shifting the time window for the ti ansfer. Operation in the SEC-GC analysis of polymer additives in a poly styene matrix, shown foi the following fractions ... Figure 12.5 Effect of shifting the time window for the ti ansfer. Operation in the SEC-GC analysis of polymer additives in a poly styene matrix, shown foi the following fractions ...

See other pages where Poly fractions is mentioned: [Pg.217]    [Pg.220]    [Pg.217]    [Pg.220]    [Pg.2270]    [Pg.2556]    [Pg.24]    [Pg.537]    [Pg.128]    [Pg.377]    [Pg.330]    [Pg.30]    [Pg.28]    [Pg.298]    [Pg.294]    [Pg.330]    [Pg.343]    [Pg.360]    [Pg.367]    [Pg.227]    [Pg.466]    [Pg.482]    [Pg.483]    [Pg.508]    [Pg.151]    [Pg.664]    [Pg.225]    [Pg.226]    [Pg.116]    [Pg.144]    [Pg.612]    [Pg.374]   
See also in sourсe #XX -- [ Pg.52 , Pg.54 , Pg.74 ]

See also in sourсe #XX -- [ Pg.52 , Pg.54 , Pg.74 ]

See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Fractionation systems poly

Fractionation, anionic poly

Fractionation, of poly

High molecular weight poly fraction

Poly fractionation

Poly fractionation

Poly relative fraction transformed

Poly synthetase microsomal-ribosomal fraction

Polymer fractionation poly

© 2024 chempedia.info