Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarizers/Polarization internal polarizer

Vibrational energy states are too well separated to contribute much to the entropy or the energy of small molecules at ordinary temperatures, but for higher temperatures this may not be so, and both internal entropy and energy changes may occur due to changes in vibrational levels on adsoiption. From a somewhat different point of view, it is clear that even in physical adsorption, adsorbate molecules should be polarized on the surface (see Section VI-8), and in chemisorption more drastic perturbations should occur. Thus internal bond energies of adsorbed molecules may be affected. [Pg.584]

Phonons are nomial modes of vibration of a low-temperatnre solid, where the atomic motions around the equilibrium lattice can be approximated by hannonic vibrations. The coupled atomic vibrations can be diagonalized into uncoupled nonnal modes (phonons) if a hannonic approximation is made. In the simplest analysis of the contribution of phonons to the average internal energy and heat capacity one makes two assumptions (i) the frequency of an elastic wave is independent of the strain amplitude and (ii) the velocities of all elastic waves are equal and independent of the frequency, direction of propagation and the direction of polarization. These two assumptions are used below for all the modes and leads to the famous Debye model. [Pg.412]

One possibility is to use hyperspherical coordinates, as these enable the use of basis fiinctions which describe reagent and product internal states in the same expansion. Hyperspherical coordinates have been extensively discussed in the literature [M, 35 and 36] and in the present application they reduce to polar coordinates (p, p) defined as follows ... [Pg.975]

A partial acknowledgment of the influence of higher discrete and continuum states, not included within the wavefunction expansion, is to add, to the tmncated set of basis states, functions of the fomi T p(r)<6p(r) where dip is not an eigenfiinction of the internal Flamiltonian but is chosen so as to represent some appropriate average of bound and continuum states. These pseudostates can provide fiill polarization distortion to die target by incident electrons and allows flux to be transferred from the the open channels included in the tmncated set. [Pg.2050]

Naturally occurring molecular ensembles such as proteins from photosyntlietic systems (plants, algae, photosyntlietic bacteria, etc) are usually relatively rigid systems tliat contain various cliromophores and hold tliem at fixed positions and orientations relative to each otlier. That is why, despite tire numerous energy jumps between tire cliromophores, tlie resulting emitted fluorescence is polarized. The extent of tliis polarization tlius affords invaluable infonnation about tlie internal stmcture of molecular complexes. [Pg.3022]

The explicit definition of water molecules seems to be the best way to represent the bulk properties of the solvent correctly. If only a thin layer of explicitly defined solvent molecules is used (due to hmited computational resources), difficulties may rise to reproduce the bulk behavior of water, especially near the border with the vacuum. Even with the definition of a full solvent environment the results depend on the model used for this purpose. In the relative simple case of TIP3P and SPC, which are widely and successfully used, the atoms of the water molecule have fixed charges and fixed relative orientation. Even without internal motions and the charge polarization ability, TIP3P reproduces the bulk properties of water quite well. For a further discussion of other available solvent models, readers are referred to Chapter VII, Section 1.3.2 of the Handbook. Unfortunately, the more sophisticated the water models are (to reproduce the physical properties and thermodynamics of this outstanding solvent correctly), the more impractical they are for being used within molecular dynamics simulations. [Pg.366]

The real utility of d comes in the analysis of thin films. Consider a substrate of refractive index supporting a thin film of thickness d and refractive index in contact with an internal reflection element (the prism) of refractive index as shown in Figure 24. In this case, d depends on the polarization of the incident light beam and is given by... [Pg.287]

Emulsion—Suspension Polymerized Pigment Ink. Polymerization of a polar prepolymer as the internal phase in an oil-based external phase (24) gives a fluorescent ink base in which spherical fluorescent particles are dispersed. This base is suitable for Htho and letterpress inks (qv). An... [Pg.301]

P. Dejmek, "PermeabiHty of the Concentration Polarization Layer in Ultrafiltration of Macro Molecules," Proceedings of the International Symposium, Separation Processes by Membranes, Paris, Mar. 13—14,1975. [Pg.304]

Internal surfactant antistats ate physically mixed with the plastic resin prior to processing. When the resin is melted, the antistat distributes evenly in the polymer matrix. The antistat usually has some degree of solubiUty in the molten polymer. However, when the polymer is processed (extmded, molded, etc) into its final form and allowed to cool, the antistat migrates to the surface of the finished article due to its limited solubiUty in the solidified resin. The molecule of a surface-active agent is composed of a polar hydrophilic portion and a nonpolar hydrophobic portion. The hydrophilic portion of the surfactant at the surface attracts moisture from the atmosphere it is the moisture that has the static dissipative effect. [Pg.297]

To obtain the corrosion current from Rp, values for the anodic and cathodic slopes must be known or estimated. ASTM G59 provides an experimental procedure for measuring Rp. A discussion or the factors which may lead to errors in the values for Rp, and cases where Rp technique cannot be used, are covered by Mansfeld in Polarization Resistance Measurements—Today s Status, Electrochemical Techniques for Corrosion Engineers (NACE International, 1992). [Pg.2441]

A d.c. insulation resistance test or polarization index reveals only the surface condition of the insulation and does not allow a realistic assessment of internal condition. Loss tangent values are true reflections of the insulation condition to detect moisture content, voids, cracks or general deterioration. The tan 5 versus test voltage curve may be drawn and compared with the original curve provided by the manufacturer, and inferences drawn regarding the condition of the insulation. The different starting tan lvalues will reveal the condition of the insulation in terms of amount of contamination, as noted in Table 10.4 (See lEE, Vol. 127, May 1980). [Pg.242]


See other pages where Polarizers/Polarization internal polarizer is mentioned: [Pg.218]    [Pg.274]    [Pg.800]    [Pg.835]    [Pg.874]    [Pg.1059]    [Pg.1075]    [Pg.1948]    [Pg.2111]    [Pg.2467]    [Pg.2502]    [Pg.183]    [Pg.206]    [Pg.220]    [Pg.229]    [Pg.160]    [Pg.404]    [Pg.100]    [Pg.10]    [Pg.671]    [Pg.354]    [Pg.313]    [Pg.156]    [Pg.155]    [Pg.202]    [Pg.242]    [Pg.449]    [Pg.424]    [Pg.152]    [Pg.228]    [Pg.251]    [Pg.434]    [Pg.503]    [Pg.310]    [Pg.221]    [Pg.1130]    [Pg.1613]    [Pg.2430]    [Pg.485]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Electrode internal polarization

Internal concentration polarization (ICP)

Persistent internal polarization

Polar solvents, internal charge

Polar solvents, internal charge transfer

Polarity/polarization total internal reflection systems

Polarization spontaneous internal

Total internal reflectance fluorescence polarization

© 2024 chempedia.info