Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Environment polar

Figures 17A and 17B (p. 183) show energy as a function of rotation for a series of 1-substituted acetaldehydes, with 6 = 0° in the syn conformation and 6 = 180° in the anti conformation. The calculations were done using the PM3 method. Figure 17A for a vacuum, whereas Fig. 17B is for a solvent cavity with a dielectric constant of 4." The table gives the calculated barriers. Discuss the following aspects (a) rationalize the order Br > Cl > F for syn conformers (b) rationalize the shift to favor the am. conformation in the more polar environment. [Pg.182]

The mechanism of the lysozyme reaction is shown in Figures 16.36 and 16.37. Studies using O-enriched water showed that the Ci—O bond is cleaved on the substrate between the D and E sites. Hydrolysis under these conditions incorporates into the Ci position of the sugar at the D site, not into the oxygen at C4 at the E site (Figure 16.36). Model building studies place the cleaved bond approximately between protein residues Glu and Asp. Glu is in a nonpolar or hydrophobic region of the protein, whereas Asp is located in a much more polar environment. Glu is protonated, but Asp is ionized... [Pg.529]

Compare the spin density surface for vitamin E radical to those of phenoxy and BHT radicals (see also Chapter 16, Problem 2). Are there significant differences among the three If so, elaborate. What is the function of the long alkyl chain in vitamin E Examine an electrostatic potential map for vitamin E radical. Do you expect it to be soluble in aqueous (polar) or non-aqueous (non-polar) environments, or both ... [Pg.242]

The role of a cationic surfactant must be to provide a necessary hydrophobic and polarized environment for the molecule of luciferin for its luminescence reaction. In the case of a common luciferin-luciferase reaction, such an environment is provided by the enzyme luciferase. The chemical structures of PMs, as well as that of the natural luciferin, have not been determined yet (see the next section). [Pg.290]

Effect of Solvent on El versus E2 versus ElcB. With any reaction a more polar environment enhances the rate of mechanisms that involve ionic intermediates. For neutral leaving groups, it is expected that El and ElcB... [Pg.1321]

Note A range of pesticides can be detected on cellulose layers using 3-hydroxyflavones without prior bromination. Thus, the natural fluorescence of robinetin or fisetin, which is weak in a non-polar environment, is significantly enhanced by the presence of polar pesticides [2, 5, 7, 8],... [Pg.90]

The extinction coefficients of carotenoids have been listed completely bnt solvent effects can shift the absorption patterns. If a colorant molecnle is transferred into a more polar environment, then the absorption will be snbjected to a bathochro-mic (red) shift. If the colorant molecnle is transferred into a more apolar enviromnent, the absorption will be subjected to a hypsochromic (blue) shift. If a carotenoid molecule is transferred from a hexane or ethanol solution into a chloroform solution, the bathochromic shift will be 10 to 20 nm. [Pg.13]

A close relationship exists between physicochemical properties of pigment molecules and their ability to be absorbed and thus to exhibit biological functions. Carotenoids are hydrophobic molecules that require a lipophilic environment. In vivo, they are found in precise locations and orientations within biological membranes. For example, the dihydroxycarotenoids such as lutein and zeaxanthin orient themselves perpendicularly to the membrane surface as molecular rivets in order to expose their hydroxyl groups to a more polar environment. [Pg.148]

Additional evidence for conformational changes in the transporter has come from measurement of the intrinsic fluorescence of the protein tryptophan residues, of which there are six, in the presence of substrates and inhibitors of transport. The fluorescence emission spectrum of the transporter has a maximum at about 336 nm, indicating the presence of tryptophan residues in both non-polar environments (which would emit maximally at about 330 nm) and in polar environments (which would emit at 340-350 nm) [154], The extent of quenching by the hydrophilic quencher KI indicates that more than 75% of the fluorescence is not available for quenching, and so probably stems from tryptophan residues buried within the hydrophobic interior of the protein or lipid bilayer [155]. Fluorescence is quenched... [Pg.194]

Carotenoids are hydrophobic molecules and thus are located in lipophilic sites of cells, such as bilayer membranes. Their hydrophobic character is decreased with an increased number of polar substitutents (mainly hydroxyl groups free or esterified with glycosides), thus affecting the positioning of the carotenoid molecule in biological membranes. For example, the dihydroxycarotenoids such as LUT and zeaxanthin (ZEA) may orient themselves perpendicular to the membrane surface as molecular rivet in order to expose their hydroxyl groups to a more polar environment. In contrast, the carotenes such as (3-C and LYC could position themselves parallel to the membrane surface to remain in a more lipophilic environment in the inner core of the bilayer membranes (Parker, 1989 Britton, 1995). Thus, carotenoid molecules can have substantial effects on the thickness, strength, and fluidity of membranes and thus affect many of their functions. [Pg.368]

Kiefer PM, Hynes JT (2002) Nonlinear free energy relations for adiabatic proton transfer reactions in a polar environment. I. Fixed proton donor—acceptor separation. J Phys Chem A... [Pg.265]

The values of the 15N CP MAS chemical shift of Lys296 nitrogen bonded to retinal via the —C=N bond ( Schiff base) was equal to 155.4 ppm for rhodopsin and 282.8 ppm for metarhodopsin (relative to 5.6 M aqueous NH4C1).70 The results proved the imine bond polarisation, which facilitates Schiff base hydrolysis. The comparison between chemical shifts for metarhodopsin and model compounds suggested that Schiff base linkage of the all-frans retinal chromophore in Metall is in a polar environment. [Pg.158]

The large molecular hyperpolarizability of the merocyanine chromophore (4,5) and the highly polar environment of the quasicrystals has prompted studies of the second order nonlinear optical properties of these materials (6). [Pg.136]

For an understanding of many systems involved in biochemistry it is important to know details of their tautomeric and ionic equilibria. For example, moving a molecule from aqueous solution to a polar environment inside a receptor may result in a different tautomer dominating the equilibrium, with consequences for the activity. In this chapter we have outlined how theoretical calculations can be used to study these systems, with the all important solvent environment treated explicitly. [Pg.137]

The details of how nitroaromatic explosive molecules interact with the chromo-phores in the polymer matrix requires further study. Initial observations suggest that because nitroaromatic explosive molecules are highly electron-deficient, that chro-mophores have an electron-rich donor and bridge, and that both nitroaromatic explosives and chromophores are highly polar, explosive molecules and chromo-phores have a strong tendency to interact with each other. The interaction between explosives and the polymer takes place in two steps. In the initial step nitroaromatic explosive molecules create a more polar environment around the chromophores. The increased polar environment produces a solvatochromic red-shift of the... [Pg.23]


See other pages where Environment polar is mentioned: [Pg.311]    [Pg.437]    [Pg.81]    [Pg.241]    [Pg.59]    [Pg.227]    [Pg.18]    [Pg.195]    [Pg.783]    [Pg.20]    [Pg.252]    [Pg.294]    [Pg.299]    [Pg.320]    [Pg.9]    [Pg.476]    [Pg.240]    [Pg.68]    [Pg.328]    [Pg.101]    [Pg.226]    [Pg.196]    [Pg.304]    [Pg.451]    [Pg.451]    [Pg.533]    [Pg.205]    [Pg.93]    [Pg.160]    [Pg.518]    [Pg.218]    [Pg.351]    [Pg.18]    [Pg.7]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.151 , Pg.703 ]




SEARCH



Environment polarity

Hydrogen Transfer in Polar Environments

Polarization environment

Polarization environment

Theoretical Aspects of Proton Transfer Reactions in a Polar Environment

© 2024 chempedia.info