Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium processing organic

Research into the aquatic chemistry of plutonium has produced information showing how this radioelement is mobilized and transported in the environment. Field studies revealed that the sorption of plutonium onto sediments is an equilibrium process which influences the concentration in natural waters. This equilibrium process is modified by the oxidation state of the soluble plutonium and by the presence of dissolved organic carbon (DOC). Higher concentrations of fallout plutonium in natural waters are associated with higher DOC. Laboratory experiments confirm the correlation. In waters low in DOC oxidized plutonium, Pu(V), is the dominant oxidation state while reduced plutonium, Pu(III+IV), is more prevalent where high concentrations of DOC exist. Laboratory and field experiments have provided some information on the possible chemical processes which lead to changes in the oxidation state of plutonium and to its complexation by natural ligands. [Pg.296]

Conceptual Flowsheet for the Extraction of Actinides from HLLW. Figure 5 shows a conceptual flowsheet for the extraction of all the actinides (U, Np, Pu, Am, and Cm) from HLLW using 0.4 M 0< >D[IB]CMP0 in DEB. The CMPO compound was selected for this process because of the high D m values attainable with a small concentration of extractant and because of the absence of macro-concentrations of uranyl ion. Distribution ratios relevant to the flowsheet are shown in previous tables, IV, V, VI, and VII and figures 1 and 2. One of the key features of the flowsheet is that plutonium is extracted from the feed solution and stripped from the organic phase without the addition of any nitric acid or use of ferrous sulfamate. However, oxalic acid is added to complex Zr and Mo (see Table IV). The presence of oxalic acid reduces any Np(VI) to Np(IV) (15). The presence of ferrous ion, which is... [Pg.439]

Recuplex A variant of the Puiex process for extracting plutonium, in which the tributyl phosphate is dissolved in carbon tetrachloride in order to make the organic phase denser than the aqueous phase. [Pg.224]

Degraded TBP process solvent is typically cleaned by washing with sodium carbonate or sodium hydroxide solutions, or both. Such washes eliminate retained uranium and plutonium as well as HDBP and H2MBP. Part of the low-molecular-weight neutral molecules such as butanol and nitrobutane, entrained in the aqueous phase, and 90-95% of the fission products ruthenium and zirconium are also removed by the alkaline washes. Alkaline washing is not sufficient, however, to completely restore the interfacial properties of the TBP solvent, because some surfactants still remain in the organic phase. [Pg.523]

The Purex process, ie, plutonium uranium reduction extraction, employs an organic phase consisting of 30 wt % TBP dissolved in a kerosene-type diluent. Purification and separation of U and Pu is achieved because of the extractability of U02+2 and Pu(IV) nitrates by TBP and the relative inextractability of Pu(III) and most fission product nitrates. Plutonium nitrate and U02(N03)2 are extracted into the organic phase by the formation of compounds, eg, Pu(N03)4 -2TBP. The plutonium is reduced to Pu(III) by treatment with ferrous sulfamate, hydrazine, or hydroxylamine and is transferred to the aqueous phase U remains in the organic phase. Further purification is achieved by oxidation of Pu(III) to Pu(IV) and re-extraction with TBP. The plutonium is transferred to an aqueous product. Plutonium recovery from the Purex process is ca 99.9 wt % (128). Decontamination factors are 106 — 10s (97,126,129). A flow sheet of the Purex process is shown in Figure 7. [Pg.201]

Reprocessing is based on liquid-liquid extraction for the recovery of uranium and plutonium from used nuclear fuel (PUREX process). The spent fuel is first dissolved in nitric acid. After the dissolution step and the removal of fine insoluble solids, an organic solvent composed of 30% TriButyl Phosphate (TBP) in TetraPropylene Hydrogenated (TPH) or Isopar L is used to recover both uranium and plutonium the great majority of fission products remain in the aqueous nitric acid phase. Once separated from the fission products, back-extraction combined with a reduction of Pu(I V) to Pu(III) allows plutonium to be separated from uranium these two compounds can be recycled.2... [Pg.198]

Transuranic Waste. Much of DOE s transuranic radioactive waste is classified as hazardous waste under RCRA and is managed as mixed waste (DOE, 1999b). Many transuranic wastes are hazardous due to the presence of toxic heavy metals or organic chemicals introduced into the waste during processing of plutonium. [Pg.231]

In summary, the solubility and sorption reactions of cobalt, strontium, neptunium, plutonium, and americium were found to be dependent on HLW compositions. Evidence revealed the formation in HLW of organic complexes of cobalt, strontium, and americium, and of hydroxide complexes of neptunium(V) and plutonium(V). Sorption reactions were dependent on radioelement complex formation and suspected waste/sediment reactions. These data can aid in assessing effects of future HLW processing operations as well as in judging the feasibility of continued storage of HLW in existing tanks. [Pg.113]

An initial experiment involving the treatment of small irradiated Pu/Al targets for the production of americium 243 and curium 244 was carried out in France in 1968 (2). The chemical process was based essentially on the use of a system comparable to the Talspeak system. After plutonium extraction by a 0.08 M trilaurylammonium nitrate solution in dodecane containing 3 vol % 2-octanol, the actinides (americium, curium) were coextracted with a fraction of the lanthanides by a 0.25 M HDEHP -dodecane solvent from an aqueous solution previously neutralized by A1(N0 ) x(0H)x and adjusted to 0.04 M DTPA. The actinides were selectively stripped by placing the organic phase in contact with an aqueous solution of the composition 3 M LiN0 -0.05 M DTPA. While this experiment achieved the recovery of 150 mg of americium 243 and 15 mg of curium 244 with good yields, the process presented a drawback due to the slow extraction of Al(III) which saturates the HDEHP. This process was therefore abandoned. [Pg.35]


See other pages where Plutonium processing organic is mentioned: [Pg.80]    [Pg.205]    [Pg.207]    [Pg.193]    [Pg.201]    [Pg.1097]    [Pg.156]    [Pg.443]    [Pg.511]    [Pg.529]    [Pg.225]    [Pg.85]    [Pg.108]    [Pg.10]    [Pg.218]    [Pg.325]    [Pg.833]    [Pg.709]    [Pg.163]    [Pg.356]    [Pg.34]    [Pg.127]    [Pg.193]    [Pg.924]    [Pg.928]    [Pg.933]    [Pg.935]    [Pg.951]    [Pg.954]    [Pg.955]    [Pg.73]    [Pg.98]    [Pg.101]    [Pg.138]    [Pg.382]    [Pg.625]    [Pg.353]    [Pg.355]    [Pg.500]    [Pg.131]    [Pg.451]   
See also in sourсe #XX -- [ Pg.1670 ]




SEARCH



Organizing process

Plutonium processing

Plutonium processing processes

© 2024 chempedia.info