Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium ions oxidation state

Complicating the development of ISEs for higher actinide ions is their inherent radioactivity. They also have chemistry tiiat often differs from that of the uranyl cation. Actinides from americium to lawrencium display solution-phase chemical features that resemble those of the trivalent lanthanides. Conversely, in certain oxidation states, the early actinides (thorium through neptunium) often mimic transition metals. Also, as mentioned above, many of the actinides can exist in a large number of oxidation states. For instance, in the case of plutonium, four oxidation states can exist simultaneously in aqueous solution. Finally, as true for the lanthanides, complex salts with hydroxide, halogens, perchlorates, sulfates, carbonates, and phosphates are well known for most of the actinides. [Pg.563]

The many possible oxidation states of the actinides up to americium make the chemistry of their compounds rather extensive and complicated. Taking plutonium as an example, it exhibits oxidation states of -E 3, -E 4, +5 and -E 6, four being the most stable oxidation state. These states are all known in solution, for example Pu" as Pu ", and Pu as PuOj. PuOl" is analogous to UO , which is the stable uranium ion in solution. Each oxidation state is characterised by a different colour, for example PuOj is pink, but change of oxidation state and disproportionation can occur very readily between the various states. The chemistry in solution is also complicated by the ease of complex formation. However, plutonium can also form compounds such as oxides, carbides, nitrides and anhydrous halides which do not involve reactions in solution. Hence for example, it forms a violet fluoride, PuFj. and a brown fluoride. Pup4 a monoxide, PuO (probably an interstitial compound), and a stable dioxide, PUO2. The dioxide was the first compound of an artificial element to be separated in a weighable amount and the first to be identified by X-ray diffraction methods. [Pg.444]

Table 6 presents a summary of the oxidation—reduction characteristics of actinide ions (12—14,17,20). The disproportionation reactions of UO2, Pu , PUO2, and AmO are very compHcated and have been studied extensively. In the case of plutonium, the situation is especially complex four oxidation states of plutonium [(111), (IV), (V), and (VI) ] can exist together ia aqueous solution ia equiUbrium with each other at appreciable concentrations. [Pg.219]

Plutonium(III) in aqueous solution, Pu " ( 4)> is pale blue. Aqueous plutonium(IV) is tan or brown the nitrate complex is green. Pu(V) is pale red-violet or pink in aqueous solution and is beUeved to be the ion PuO Pu(VI) is tan or orange in acid solution, and exists as the ion PuO. In neutral or basic solution Pu(VI) is yellow cationic and anionic hydrolysis complexes form. Pu(VII) has been described as blue-black. Its stmcture is unknown but may be the same as the six-coordinate NpO (OH) (91). Aqueous solutions of each oxidation state can be prepared by chemical oxidants or reductants... [Pg.198]

The pattern of iridium halides resembles rhodium, with the higher oxidation states only represented by fluorides. The instability of iridium(IV) halides, compared with stable complexes IrCl4L2 and the ions IrX (X = Cl, Br, I), though unexpected, finds parallels with other metals, such as plutonium. Preparations of the halides include [19]... [Pg.80]

On the basis of these facts, it was speculated that plutonium in its highest oxidation state is similar to uranium (VI) and in a lower state is similar to thorium (IV) and uranium (IV). It was reasoned that if plutonium existed normally as a stable plutonium (IV) ion, it would probably form insoluble compounds or stable complex ions analogous to those of similar ions, and that it would be desirable (as soon as sufficient plutonium became available) to determine the solubilities of such compounds as the fluoride, oxalate, phosphate, iodate, and peroxide. Such data were needed to confirm deductions based on the tracer experiments. [Pg.10]

The uncertainty of the proper coordination number of any particular plutonium species in solution leads to a corresponding uncertainty in the correct cationic radius. Shannon has evaluated much of the available data and obtained sets of "effective ionic radii" for metal ions in different oxidation states and coordination numbers (6). Unfortunately, the data for plutonium is quite sparse. By using Shannon s radii for other actinides (e.g., Th(iv), U(Vl)) and for Ln(III) ions, the values listed in Table I have been obtained for plutonium. These radii are estimated to have an uncertainty of 0.02 X ... [Pg.217]

Studies of ligands which might provide specificity in binding to various oxidation states of plutonium seems a particularly promising area for futher research. If specific ion electrodes could be developed for the other oxidation states, study of redox reactions would be much facilitated. Fast separation schemes which do not change the redox equilibria and function at neutral pH values would be helpful in studies of behavior of tracer levels of plutonium in environmental conditions. A particularly important question in this area is the role of PuOj which has been reported to be the dominant soluble form of plutonium in some studies of natural waters (3,14). [Pg.230]

Prediction of the chemistry of plutonium in near-neutral aqueous media is highly dependent on understanding reactions that may be occurring in such media. One of the most important parameters is the stability and nature of complexes formed by plutonium in its four common oxidation states. Because Pu(III), Pu(IV), and Pu(VI) are readily hydrolysed, complexation reactions generally are studied in mildly to strongly acidic media. Data determined in acid media (and frequently at high concentrations of plutonium) then are used to predict the chemical speciation of plutonium at near-neutral pH and low concentrations of the metal ion. [Pg.251]

The primary reason for studying aqueous plutonium photochemistry has been the scientific value. No other aqueous metal system has such a wide range of chemistry four oxidation states can co-exist (III, IV, V, and VI), and the Pu(IV) state can form polymer material. Cation charges on these species range from 1 to 4, and there are molecular as well as metallic ions. A wide variety of anion and chelating complex chemistry applies to the respective oxidation states. Finally, all of this aqueous plutonium chemistry could be affected by the absorption of light, and perhaps new plutonium species could be discovered by photon excitation. [Pg.264]

These various broad research observations generated questions about the influence of chemical environments in aquatic systems upon plutonium and what chemical species might be present. The oxidation states of plutonium, its associations with DOC, and its complexation by inorganic ions all seemed interrelated and important to the understanding of environmental transport. [Pg.301]

The aqueous chemistry of plutonium may well be unique in that four oxidation states co-exist in appreciable quantities. As with the trend set at NpOj, PuOJ is quite stable and its stability increases with decreasing acidity since the couples are strongly hydrogen ion dependent. [Pg.50]

Other factors which regulate disproportionation reactions include the presence of complexing ions which stabilise one particular oxidation state of plutonium. [Pg.50]

A primary goal of chemical separation processes in the nuclear industry is to recover actinide isotopes contained in mixtures of fission products. To separate the actinide cations, advantage can be taken of their general chemical properties [18]. The different oxidation states of the actinide ions lead to ions of charges from +1 (e.g., NpOj) to +4 (e.g., Pu" " ) (see Fig. 12.1), which allows the design of processes based on oxidation reduction reactions. In the Purex process, for example, uranium is separated from plutonium by reducing extractable Pu(IV) to nonextractable Pu(III). Under these conditions, U(VI) (as U02 ) and also U(IV) (as if present, remain in the... [Pg.511]

Many oxidation states of the actinides are poorly stable or stable only under certain conditions. Great care must thus be taken in preparing samples for relaxometry studies. Working under the same chemical conditions with different actinides in the same oxidation state is sometimes impossible. Plutonium is particularly noteworthy because it is the only element in the Mendeleev table that can exist simultaneously in solution in four different oxidation states. This unusual situation stems from the fact that the ions and PuO have a tendency to undergo dismuta-... [Pg.383]

As mentioned in the Introduction, the actinyl ions are not stable under all chemical conditions. Plutonium can coexist in solution in several oxidation states, the stability of which often depends strongly on acidity (26). As a result, great care must be taken to obtain pure solutions of PuOl(27). On the other hand, the neptunyl ion NpO is the most stable form of neptunium in aqueous solution. It is noteworthy that the exchange between the oxygen atoms of PuO and H20 is very slow (ti/2 > 10 h) (25), whereas it is quite fast (h/2 2.2 s) in the case of NpO. ... [Pg.387]

The spent fuel element is still mainly UO2 and is dissolved in aqueous nitric acid, which is oxidizing enough to take the uranium to the VI oxidation state as UC>22+(aq) and Pu to Pu4+(aq) (the uranyl ion U022+ can be regarded as hydrolyzed U6+ see Section 13.6). Treatment of the solution of uranyl and plutonium(IV) nitrates with either an iron(II) salt or SO2 will reduce all the Pu to Pu3+(aq), which is not extractable with TBP, but will leave the uranium(VI) untouched (see Exercise 15.5). The solution is then equilibrated with TBP (which is immiscible with water) or TBP in an alkane solvent. The U022+ forms a neutral complex containing both TBP and the nitrate ions, which axe present in large excess ... [Pg.364]

Processes for the isolation and purification of plutonium, including the enrichment of spent nuclear reactor fuels, arc described in the entry on Nuclear Power Technology. These processes take advantage of Pu s several oxidation states, each of which has different chemical properties. The processes may involve carrier precipitation, solvent extraction, and ion exchange. [Pg.1319]

The ionic species corresponding to the four oxidation states of plutonium vary wifli the acidity of the solution. In moderately strong < one-molar) acid the species are Pu11, Pu4+, PuO ,1, and PuO 2 E The 10ns are hydrated but it is not possible at present to assign a definite hydration to each ion. The potential scheme of these ions in one-molar perchloric acid is tile following ... [Pg.1319]

Pu(IV), which forms highly charged polymers, strongly sorbs to soils and sediments. Other actinide III and IV oxidation states also bind by ion exchange to clays. The uptake of these species by solids is in the same sequence as the order of hydrolysis Pu > Am(III) > U(VI) > Np(V). The uptake of these actinides by plants appears to be in the reverse order of hydrolysis Np(V) > U(VI) > Am(III) > Pu(IV), with plants showing little ability to assimilate the immobile hydrolyzed species. The further concentration of these species in the food chain with subsequent deposit in humans appears to be minor. Of the 4 tons of plutonium released to the environment in atmospheric testing of nuclear weapons, the total amount fixed in the world population is less than 1 g [of this amount, most (99.9%) was inhaled rather than ingested]. [Pg.462]


See other pages where Plutonium ions oxidation state is mentioned: [Pg.452]    [Pg.98]    [Pg.13]    [Pg.203]    [Pg.216]    [Pg.218]    [Pg.10]    [Pg.127]    [Pg.187]    [Pg.215]    [Pg.217]    [Pg.227]    [Pg.311]    [Pg.333]    [Pg.446]    [Pg.129]    [Pg.1653]    [Pg.444]    [Pg.226]    [Pg.685]    [Pg.464]    [Pg.1070]    [Pg.1699]    [Pg.128]    [Pg.131]    [Pg.944]    [Pg.66]    [Pg.67]    [Pg.8]   


SEARCH



Plutonium ions

Plutonium oxidation

Plutonium oxidation states

Plutonium oxidative

Plutonium oxides

© 2024 chempedia.info