Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pluronic triblock copolymer molecular structure

Partly soluble triblock copolymers are also sometimes used for monolayer studies. Such investigations could provide data on desorption kinetics, and allow for comparison of the film structure, whether spread or adsorbed. However, attention should be paid to data interpretation in such cases because intricate equilibriums take place in such systems. A somewhat confusing study has been presented concerning the monolayer miscibility between PLA and PEO-PPO-PEO (also known as Pluronic) in monolayers [53]. The authors attempted to discuss interactions between the triblock copolymer and a homopolymer (PLA) on the basis of Langmuir monolayer experiments however, the results show unrealistic values for molecular areas, and therefore conclusions from those measurements cannot be quantitative. In particular, surface pressure-area isotherms for pure polymers and their mixtures reveal, in the compressed state, areas per monomer unit of the order of 3 h and below. Such low values cannot be real and most probably result either from material dissolution in the subphase or poor spreading at the air-water interface. Indeed, the isotherms do not appear smooth, which suggests low film stability and difficulties in forming a true monolayer. [Pg.166]

Pluronics, also known as poloxamers, are a class of synthetic block copolymers which consist of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO), arranged in an A-B-A triblock structure, thus giving PEO-PPO-PEO (Fig. 11.7) (Batrakova and Kabanov 2008). They can be found either as liquids, pastes or solids (Ruel-Gariepy and Leroux 2004). Due to their amphiphilic characteristics (presence of hydrophobic and hydrophilic components), pluronics possess surfactant properties which allow them to interact with hydrophobic surfaces and biological membranes (Batrakova and Kabanov 2008). Being amphiphilic also results in the ability of the individual block copolymers, known as unimers, to combine and form micelles in aqueous solutions. When the concentration of the block copolymers is below that of the critical micelle concentration (CMC), the unimers remain as molecular solutions in water. However, as the block copolymer concentration is increased above the CMC, the unimers will self-assemble and form micelles, which can take on spherical, rod-shaped or lamellar geometries. Their shapes depend on the length and concentration of the block copolymers (i.e. EO and PO), and the temperature (Kabanov et al. 2002). Micelles usually have a hydrophobie eore, in this case the PO chains, and a hydrophilic shell, the EO ehains. [Pg.271]

PEO-PPO, and later on PEO-PBO copolymers, represent the link between classical low molecular weight non-ionic surfactants and polymeric surfactants. These commercially available products (formerly known as POLOXAMERS, PLURICARE, PLURONICS, SYN-PERONICS), mainly with di- and triblock structures can form, depending on temperature and concentration, true solutions, micelles of different shapes and physical gels. Their micellization behavior has been studied quite extensively and the experimental as well as the theoretical results were summarized in the review articles of Nace [10], Chu and Zhou [116], Ahngren etal. [147], Hamley [11], Booth and co-workers [79,148] and Wanka etal. [149]. [Pg.197]


See other pages where Pluronic triblock copolymer molecular structure is mentioned: [Pg.285]    [Pg.341]    [Pg.38]    [Pg.144]    [Pg.314]    [Pg.291]    [Pg.451]    [Pg.4]    [Pg.556]    [Pg.461]    [Pg.395]    [Pg.277]    [Pg.425]   
See also in sourсe #XX -- [ Pg.451 ]




SEARCH



Copolymer Pluronics

Copolymers triblock

Pluronic

Pluronic copolymer

Pluronics

Structure copolymers

Triblock

Triblock copolymers structure

© 2024 chempedia.info