Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum, viii

Fig. VIII-2. Scanning tunneling microscopy images illustrating the capabilities of the technique (a) a 10-nm-square scan of a silicon(lll) crystal showing defects and terraces from Ref. 21 (b) the surface of an Ag-Au alloy electrode being electrochemically roughened at 0.2 V and 2 and 42 min after reaching 0.70 V (from Ref. 22) (c) an island of CO molecules on a platinum surface formed by sliding the molecules along the surface with the STM tip (from Ref. 41). Fig. VIII-2. Scanning tunneling microscopy images illustrating the capabilities of the technique (a) a 10-nm-square scan of a silicon(lll) crystal showing defects and terraces from Ref. 21 (b) the surface of an Ag-Au alloy electrode being electrochemically roughened at 0.2 V and 2 and 42 min after reaching 0.70 V (from Ref. 22) (c) an island of CO molecules on a platinum surface formed by sliding the molecules along the surface with the STM tip (from Ref. 41).
The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

The nine elements, Fe, Ru, Os Co, Rh, Ir Ni, Pd and Pt, together formed Group VIII of Mendeleev s periodic table. They will be treated here, like the other transition elements, in vertical triads, but because of the marked horizontal similarities it is not uncommon for Fe, Co and Ni to be distinguished from the other six elements (known collectively as the platinum metals) and the two sets of elements considered separately. [Pg.1070]

Catalysts. The methanation of CO and C02 is catalyzed by metals of Group VIII, by molybdenum (Group VI), and by silver (Group I). These catalysts were identified by Fischer, Tropsch, and Dilthey (18) who studied the methanation properties of various metals at temperatures up to 800°C. They found that methanation activity varied with the metal as follows ruthenium > iridium > rhodium > nickel > cobalt > osmium > platinum > iron > molybdenum > palladium > silver. [Pg.23]

Concerning consecutive reactions, a typical example is the hydrogenation of alkynes through alkenes to alkanes. Alkenes are more reactive alkynes, however, are much more strongly adsorbed, particularly on some group VIII noble metal catalysts. This situation is illustrated in Fig. 2 for a platinum catalyst, which was taken from the studies by Bond and Wells (45, 46) on hydrogenation of acetylene. The figure shows the decrease of... [Pg.10]

Platinum-rhenium catalysts have been reduced in one atmosphere of flowing hydrogen and then examined, without exposure to the atmosphere, by ESCA. The spectra indicate that the Group VIII metal is present in a metallic state in the reduced catalyst and that the majority of the rhenium is present in a valence state higher than Re(0). [Pg.57]

We plan to make studies on palladium-copper, iridium-copper, and platinum-copper catalysts to extend our investigation of the effect of varying miscibility of the components on the structural features of the bimetallic clusters present. With these additional systems, the whole range from complete immiscibility to total miscibility of copper with the Group VIII metal will be encompassed. [Pg.262]

X-Ray studies confirm that platinum crystallites exist on carbon supports at least down to a metal content of about 0.03% (2). On the other hand, it has been claimed that nickel crystallites do not exist in nickel/carbon catalysts (50). This requires verification, but it does draw attention to the fact that carbon is not inert toward many metals which can form carbides or intercalation compounds with graphite. In general, it is only with the noble group VIII metals that one can feel reasonably confident that a substantial amount of the metal will be retained on the carbon surface in its elemental form. Judging from Moss s (35) electron micrographs of a reduced 5% platinum charcoal catalyst, the platinum crystallites appear to be at least as finely dispersed on charcoal as on silica or alumina, or possibly more so, but both platinum and palladium (51) supported on carbon appear to be very sensitive to sintering. [Pg.14]

The activity of metals other than platinum for skeletal reactions of larger molecules is not well documented, particularly in a mechanistic sense. Carter, Cusumano, and Sinfelt (157) have recently studied the reaction of n-heptane on a series of group VIII metals in the form of hydrogen-reduced (300°C) metal powders. The nature of the reaction pathways is summarized in Table IX. Although many metals have been... [Pg.60]

In Table II are listed the neutral homonuclear carbonyls of the Group VIII metals that have been identified to date. Although palladium and platinum do not have any stable neutral carbonyls, a large... [Pg.262]

Palladium(II) oxide, 4825 Palladium(IV) oxide, 4835 Perchloric acid, 3998 Periodic acid, 4425 Permanganic acid, 4434 Peroxodisulfuric acid, 4482 Peroxodisulfuryl difluoride, 4328 Peroxomonosulfuric acid, 4481 Peroxytrifluoroacetic acid, 0666 Platinum hexafluoride, 4371 Platinum(IV) oxide, 4836 Plutonium hexafluoride, 4372 Potassium bromate, 0255 Potassium chlorate, 4017 Potassium dichromate, 4248 Potassium iodate, 4619 Potassium nitrate, 4650 Potassium nitrite, 4649 Potassium perchlorate, 4018 Potassium periodate, 4620 Potassium permanganate, 4647 Rhenium hexafluoride, 4373 Rubidium fluoroxysulfate, 4309 Ruthenium(VIII) oxide, 4862 Selenium dioxide, 4838 Selenium dioxide, 4838 Silver permanganate, 0021 Sodium chlorate, 4039 Sodium chlorite, 4038 Sodium dichromate, 4250 Sodium iodate, 4624 Sodium nitrate, 4721 Sodium nitrite, 4720... [Pg.309]

Stern showed rather conclusively that the palladium does not depart to leave a carbonium ion but that both hydride migration and collapse to an aldehyde proceed simultaneously. The removal of the /3 hydrogen in a complexes by the heavier Group VIII metals has been documented. Thus Chatt and Shaw (63) showed that a platinum hydride complex could undergo the reversible addition of ethylene ... [Pg.40]

A double bond in the 7,8-(VI) or 8,9-(VII) position of a steroid which has the trans A/B ring configuration isomerizes to the 8,14 position (VIII) when treated with hydrogen and a palladium catalyst or platinum in the presence of acetic acid (69) (Fig. 12). Once the double bond reaches the 8,14 position it cannot be hydrogenated however it may be isomerized by treatment with HCl in chloroform to yield a isomer which can be reduced catalytically. [Pg.143]

Rhodium is a hard shiny-white metal that resists corrosion from oxygen, moisture, and acids at room temperatures. As a member of group 8 (VIII), Rh shares many chemical and physical properties with cobalt (j Co) just above it and iridium ( ylr) below it in the vertical group. Therefore, it is considered one of the elements that are transitory between metals and nonmetals. It is rare and only found in combination with platinum ores. [Pg.136]

Osmium is found in group 8 (VIII) of the periodic table and has some of the same chemical, physical, and historical characteristics as several other elements. This group of similar elements is classed as the platinum group, which includes Ru, Rh, and Pd of the second transition series (period 5) and Os, Ir, and Pt of the third series of transition metals (period 6). [Pg.158]


See other pages where Platinum, viii is mentioned: [Pg.138]    [Pg.85]    [Pg.138]    [Pg.85]    [Pg.203]    [Pg.294]    [Pg.176]    [Pg.48]    [Pg.196]    [Pg.213]    [Pg.26]    [Pg.145]    [Pg.167]    [Pg.218]    [Pg.301]    [Pg.238]    [Pg.59]    [Pg.564]    [Pg.60]    [Pg.43]    [Pg.59]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.104]    [Pg.107]    [Pg.108]    [Pg.145]    [Pg.153]    [Pg.265]    [Pg.433]    [Pg.19]    [Pg.109]    [Pg.284]   
See also in sourсe #XX -- [ Pg.13 , Pg.23 , Pg.65 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.79 , Pg.81 , Pg.82 , Pg.89 , Pg.108 , Pg.114 , Pg.115 , Pg.155 , Pg.241 ]




SEARCH



Group 10 (VIII palladium and platinum

Group VIII Nickel, Palladium and Platinum

© 2024 chempedia.info