Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum oxide fluoride

Phillips and Timms [599] described a less general method. They converted germanium and silicon in alloys into hydrides and further into chlorides by contact with gold trichloride. They performed GC on a column packed with 13% of silicone 702 on Celite with the use of a gas-density balance for detection. Juvet and Fischer [600] developed a special reactor coupled directly to the chromatographic column, in which they fluorinated metals in alloys, carbides, oxides, sulphides and salts. In these samples, they determined quantitatively uranium, sulphur, selenium, technetium, tungsten, molybdenum, rhenium, silicon, boron, osmium, vanadium, iridium and platinum as fluorides. They performed the analysis on a PTFE column packed with 15% of Kel-F oil No. 10 on Chromosorb T. Prior to analysis the column was conditioned with fluorine and chlorine trifluoride in order to remove moisture and reactive organic compounds. The thermal conductivity detector was equipped with nickel-coated filaments resistant to corrosion with metal fluorides. Fig. 5.34 illustrates the analysis of tungsten, rhenium and osmium fluorides by this method. [Pg.192]

In an earlier communication we described a penta-fluoride of platinum and an oxyfluoride which we then identified as platinum oxide tetrafluoride. Both fluorides are produced when platinum or platinum salts are fluorinated at high temperatures (200—330°) in glass or silica apparatus. Although the penta-... [Pg.5]

Platinum(V) fluoride is a tetramer (structurally like 22.5) PtFg is a red solid and has a molecular structure consisting of octahedral molecules neutron powder diffraction data confirm little deviation from an ideal octahedral structure. The hexafluoride is a very powerful oxidizing agent (equation 22.127, and see Section 5.16) and attacks glass. The oxidizing power of the second row rZ-block hexafluorides... [Pg.684]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

This method involves very simple and inexpensive equipment that could be set up m any laboratory [9, 10] The equipment consists of a 250-mL beaker (used as an external half-cell), two platinum foil electrodes, a glass tube with asbestos fiber sealed m the bottom (used as an internal half-cell), a microburet, a stirrer, and a portable potentiometer The asbestos fiber may be substituted with a membrane This method has been used to determine the fluoride ion concentration in many binary and complex fluondes and has been applied to unbuffered solutions from Willard-Winter distillation, to lon-exchange eluant, and to pyrohydrolysis distil lates obtained from oxygen-flask or tube combustions The solution concentrations range from 0 1 to 5 X 10 M This method is based on complexing by fluonde ions of one of the oxidation states of the redox couple, and the potential difference measured is that between the two half-cells Initially, each cell contains the same ratio of cerium(IV) and cerium(tll) ions... [Pg.1026]

The magnetic criterion is particularly valuable because it provides a basis for differentiating sharply between essentially ionic and essentially electron-pair bonds Experimental data have as yet been obtained for only a few of the interesting compounds, but these indicate that oxides and fluorides of most metals are ionic. Electron-pair bonds are formed by most of the transition elements with sulfur, selenium, tellurium, phosphorus, arsenic and antimony, as in the sulfide minerals (pyrite, molybdenite, skutterudite, etc.). The halogens other than fluorine form electron-pair bonds with metals of the palladium and platinum groups and sometimes, but not always, with iron-group metals. [Pg.313]

Several preparative methods do not use elemental mixtures. Group IIA-Pt intermetallic compounds have been prepared by reacting platinum metal with the group-IIA oxide under hydrogen or ammonia at 900-1200 C. Beryllium metal reacts with neptunium fluoride under vacuum at 1100-1200°C to form BC 3Np. [Pg.471]

A mixture of anhydrous hydrogen fluoride and 60% argon is passed over yttrium sesquioxide (Y203) at 700 °C for 16 h. The oxide is contained in a platinum boat, and the inconel furnace tube is also lined with platinum. [Pg.414]

Coupled reduction with platinum group metals. Very pure metals of the alkaline earth, lanthanide and actinide series can be prepared from their oxides (or fluorides) by coupled reduction by pure hydrogen in presence of platinum group metals (see 6.7.2.2). [Pg.450]

Preparation of base metals by coupled reduction with platinum group metals. Very pure metals of the alkaline- earth, lanthanide and actinide series can be prepared from their oxides (or fluorides) through coupled reduction by pure hydrogen in presence of platinum group metals. According to a precursory paper on this subject (Berndt et al. 1974), the preparation scheme of Li, Ca, Sr, Ba, Am and Cf was described. As an example, Ca can be obtained by synthesis of a Pt compound, followed by its vacuum decomposition and recovery by distillation of the more volatile base metal ... [Pg.590]

Anhydrous lanthanum fluoride also may be made by passing dry hydrogen fluoride over lanthanum oxide. This process, however, produces trace amounts of lanthanum oxyfluoride, LaOF. Highly purified material may be obtained by passing dry purified HF over molten fluoride in a platinum crucible. [Pg.449]

The hexafluoride is a very powerful oxidizing agent reacting violently with most oxidizable substances. Reaction with liquid water is violent forming HF, oxygen, lower fluorides of platinum, and other products. In vapor phase hydrolysis occurs more smoothly. [Pg.724]

The ore thortveitite is crushed and powdered. It is mixed with a large excess of ammonium hydrogen fluoride and heated at about 400°C for several hours in a platinum container under a stream of dry air. Silica is converted to volatile silicon tetrafluoride and swept out with dry air. Scandium oxide is converted to scandium trifluoride, SCF3 ... [Pg.810]


See other pages where Platinum oxide fluoride is mentioned: [Pg.85]    [Pg.85]    [Pg.187]    [Pg.73]    [Pg.85]    [Pg.362]    [Pg.205]    [Pg.1035]    [Pg.482]    [Pg.258]    [Pg.195]    [Pg.788]    [Pg.1128]    [Pg.1868]    [Pg.642]    [Pg.195]    [Pg.317]    [Pg.317]    [Pg.472]    [Pg.178]    [Pg.244]    [Pg.1082]    [Pg.1152]    [Pg.56]    [Pg.18]    [Pg.571]    [Pg.455]    [Pg.1526]    [Pg.244]    [Pg.805]    [Pg.371]    [Pg.37]    [Pg.85]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Fluorides oxidizing

Oxidation platinum

Oxide fluorides

Platinum oxide

Platinum, fluoride

© 2024 chempedia.info