Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plate boundary conditions

Otsuki, K. (1990) Neogene tectonic stress fields of northeast Honshu Arc and implications for plate boundary conditions. Tectonophysics, 181, 151-164. [Pg.283]

To obtain the electrical potential at the midway between the plates, boundary conditions are required. At the plate surface with a charge density of o,... [Pg.359]

Experimental verification of the Blasius theory has been hindered by the difficulty in reproducing the ideal flat plate boundary conditions in the laboratory. Whenever uniform pressure was attained and the effects of a real leading edge were accounted for, however, it was found that the preceding calculated results were always verified to within the accuracy of the experiment. [Pg.442]

The electrical end plate boundary conditions can be expressed in terms of ghost values for f and 1" + in (9.34) ... [Pg.330]

We formulate boundary conditions in the two-dimensional theory of plates and shells. Denote by u = U,w), U = ui,U2), horizontal and vertical displacements at the boundary T of the mid-surface fl c R. Then the horizontal displacements U may satisfy the Dirichlet-type conditions... [Pg.17]

In this chapter we analyse a wide class of equilibrium problems with cracks. It is well known that the classical approach to the crack problem is characterized by the equality type boundary conditions considered at the crack faces, in particular, the crack faces are considered to be stress-free (Cherepanov, 1979, 1983 Kachanov, 1974 Morozov, 1984). This means that displacements found as solutions of these boundary value problems do not satisfy nonpenetration conditions. There are practical examples showing that interpenetration of crack faces may occur in these cases. An essential feature of our consideration is that restrictions of Signorini type are considered at the crack faces which do not allow the opposite crack faces to penetrate each other. The restrictions can be written as inequalities for the displacement vector. As a result a complete set of boundary conditions at crack faces is written as a system of equations and inequalities. The presence of inequality type boundary conditions implies the boundary problems to be nonlinear, which requires the investigation of corresponding boundary value problems. In the chapter, plates and shells with cracks are considered. Properties of solutions are established existence of solutions, regularity up to the crack faces, convergence of solutions as parameters of a system are varying and so on. We analyse different constitutive laws elastic, viscoelastic. [Pg.69]

The results on contact problems for plates without cracks can be found in (Caffarelli, Friedman, 1979 Caffarelli et al., 1982). Properties of solutions to elliptic problems with thin obstacles were analysed in (Frehse, 1975 Schild, 1984 Necas, 1975 Kovtunenko, 1994a). Problems with boundary conditions of equality type at the crack faces are investigated in (Friedman, Lin, 1996). [Pg.95]

The crack shape is defined by the function -ip. This function is assumed to be fixed. It is noteworthy that the problems of choice of the so-called extreme crack shapes were considered in (Khludnev, 1994 Khludnev, Sokolowski, 1997). We also address this problem in Sections 2.4 and 4.9. The solution regularity for biharmonic variational inequalities was analysed in (Frehse, 1973 Caffarelli et ah, 1979 Schild, 1984). The last paper also contains the results on the solution smoothness in the case of thin obstacles. As for general solution properties for the equilibrium problem of the plates having cracks, one may refer to (Morozov, 1984). Referring to this book, the boundary conditions imposed on crack faces have the equality type. In this case there is no interaction between the crack faces. [Pg.110]

In this subsection we prove an existence theorem of the equilibrium problem for the plate. The problem is formulated as a variational inequality which together with (3.2), (3.5) contains full information about other boundary conditions holding on x (0, T). An exact form of these conditions is found in the next subsection. [Pg.174]

Note that the absence of a contact between the plates at the point x G F, dT means w x) > u(x) — 5. As we know, in this case the following boundary conditions hold in a neighbourhood of the point x ... [Pg.193]

Here [ ] is the jump of a function across the crack faces and v is the normal to the surface describing the shape of the crack. Thus, we have to find a solution to the model equations of a thermoelastic plate in a domain with nonsmooth boundary and boundary conditions of the inequality type. [Pg.198]

The equilibrium problem for a plate is formulated as some variational inequality. In this case equations (3.92)-(3.94) hold, generally speaking, only in the distribution sense. Alongside (3.95), other boundary conditions hold on the boundary F the form of these conditions is clarified in Section 3.3.3. To derive them, we require the existence of a smooth solution to the variational inequality in question. On the other hand, if we assume that a solution to (3.92)-(3.94) is sufficiently smooth, then the variational inequality is a consequence of equations (3.92)-(3.94) and the initial and boundary conditions. All these questions are discussed in Section 3.3.3. In Section 3.3.2 we prove an existence theorem for a solution to the variational equation and in Section 3.3.4 we establish some enhanced regularity properties for the solution near F. ... [Pg.200]

It is noteworthy that the original equilibrium problem for a plate with a crack can be stated twofold. On the one hand, it may be formulated as variational inequality (3.98). In this case all the above-derived boundary conditions are formal consequences of such a statement under the supposition of sufficient smoothness of a solution. On the other hand, the problem may be formulated as equations (3.92)-(3.94) given initial and boundary conditions (3.95)-(3.97) and (3.118)-(3.122). Furthermore, if we assume that a solution is sufficiently smooth then from (3.92)-(3.97) and (3.118)-(3.122) we can derive variational inequality (3.98). [Pg.208]

We prove an existence theorem for elastoplastic plates having cracks. The presence of the cracks entails the domain to have a nonsmooth boundary. The proof of the theorem combines an elliptic regularization and the penalty method. We show that the solution satisfies all boundary conditions imposed at the external boundary and at the crack faces. The results of this section follow the paper (Khludnev, 1998). [Pg.320]

We prove an existence of solutions for the Prandtl-Reuss model of elastoplastic plates with cracks. The proof is based on a special combination of a parabolic regularization and the penalty method. With the appropriate a priori estimates, uniform with respect to the regularization and penalty parameters, a passage to the limit along the parameters is fulfilled. Both the smooth and nonsmooth domains are considered in the present section. The results obtained provide a fulfilment of all original boundary conditions. [Pg.328]

In this subsection we prove the solvability of the elastoplastic problem for a plate having a nonsmooth boundary. A solution of the problem will satisfy all boundary conditions both at the exterior boundary and at the crack faces. [Pg.336]

Example The equation dQ/dx = (A/f/)(3 6/3f/ ) with the boundary conditions 0 = OatA.=O, y>0 6 = 0aty = oo,A.>0 6=iaty = 0, A.>0 represents the nondimensional temperature 6 of a fluid moving past an infinitely wide flat plate immersed in the fluid. Turbulent transfer is neglected, as is molecular transport except in the y direction. It is now assumed that the equation and the boundary conditions can be satisfied by a solution of the form 6 =f y/x ) =j[u), where 6 =... [Pg.457]

This problem requires use of the microscopic balance equations because the velocity is to he determined as a function of position. The boundary conditions for this flow result from the no-slip condition. AU three velocity components must he zero at the plate surfaces, y = H/2 and y = —H/2. [Pg.635]

Boundary conditions used to be thought of as a choice between simply supported, clamped, or free edges if all classes of elastically restrained edges are neglected. The real situation for laminated plates is more complex than for isotropic plates because now there are actually four types of boundary conditions that can be called simply supported edges. These more complicated boundary conditions arise because now we must consider u, v, and w instead of just w alone. Similarly, there are four kinds of clamped edges. These boundary conditions can be concisely described as a displacement or derivative of a displacement or, alternatively, a force or moment is equal to some prescribed value (often zero) denoted by an overbar at the edge ... [Pg.283]

The boundary conditions could be different for each edge of a plate, so the number of combinations of possible boundary conditions is quite large as it was with equilibrium problems. [Pg.288]

If the transverse loading is represented by the Fourier sine series in Equation (5.25), the solution to this fourth-order partial differential equation and subject to its associated boundary conditions is remarkably simple. As with isotropic plates, the solution can easily be verified to be... [Pg.290]

Note the presence of the bend-twist coupling stiffnesses in the boundary conditions as well as in the differential et uation. As with the specially orthotropic laminated plate, the simply supported edge boundary condition cannot be further distinguished by the character of the in-plane boundary conditions on u and v because the latter do not appear in any plate problem for a symmetric laminate. [Pg.291]

The solution to the governing differential equation, Equation (5.32), is not as simple as for specially orthotropic laminated plates because of the presence of D. g and D2g. The Fourier expansion of the deflection w. Equation (5.29), is an example of separation of variables. However, because of the terms involving D.,g and D2g, the expansion does not satisfy the governing differential equation because the variables are not separable. Moreover, the deflection expansion also does not satisfy the boundary conditions. Equation (5.33), again because of the terms involving D. g and D2g. [Pg.291]

Whitney solved the problem for simply supported edge boundary condition S3 [5-13 and 5-14] (recall that S2 was used for antisymmetric cross-ply laminated plates in Section 5.3.3) ... [Pg.299]

The buckling load will be determined for plates with various laminations specially orthotropic, symmetric angle-ply, antisymmetric cross-ply, and antisymmetric angle-ply. The results for the different lamination types will be compared to find the influence of bend-twist coupling and bending-extension coupling. As with the deflection problems in Section 5.3, different simply supported edge boundary conditions will be used in the several problems addressed for convenience of illustration. [Pg.303]

The solution to this fourth-order partial differential equation and associated homogeneous boundary conditions is just as simple as the analogous deflection problem in Section 5.3.1. The boundary conditions are satisfied by the variation in lateral displacement (for plates, 5w actually is the physical buckle displacement because w = 0 in the membrane prebuckling state however, 5u and 8v are variations from a nontrivial equilibrium state. Hence, we retain the more rigorous variational notation consistently) ... [Pg.304]

The presence of D g 26 governing differential equation and the boundary conditions renders a closed-form solution impossible. That is, in analogy to both bending and buckling of a symmetric angle-ply (or anisotropic) plate, the variation in lateral displacement, 5vy, cannot be separated into a function of x alone times a function of y alone. Again, however, the Rayleigh-Ritz approach is quite useful. The expression... [Pg.318]


See other pages where Plate boundary conditions is mentioned: [Pg.108]    [Pg.111]    [Pg.114]    [Pg.330]    [Pg.108]    [Pg.111]    [Pg.114]    [Pg.330]    [Pg.182]    [Pg.171]    [Pg.95]    [Pg.119]    [Pg.171]    [Pg.293]    [Pg.156]    [Pg.457]    [Pg.54]    [Pg.1038]    [Pg.278]    [Pg.284]    [Pg.284]    [Pg.288]    [Pg.290]    [Pg.301]    [Pg.306]    [Pg.315]   
See also in sourсe #XX -- [ Pg.501 , Pg.502 ]




SEARCH



Laminated plates boundary conditions

© 2024 chempedia.info