Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastic flow rates

B. N. Dey, Plastic-Flow Rates in Nylon Interpreted in Terms of Dislocation Motion, Jour. Appl. Phys., 38,4144 (1967). [Pg.169]

The mechanical elastic part is related to the Jaumann objective stress rate through Hooke s law. For the plastic parts, a general framework of non-associated plasticity is adopted in order to limit dilatancy. In that case, the plastic flow rate is derived from a plastic potential... [Pg.588]

Hoover W G, Ladd A J C and Moran B 1982 High strain rate plastic flow studied via nonequilibrium molecular dynamics Phys. Rev.L 48 1818-20... [Pg.2283]

Another aspect of plasticity is the time dependent progressive deformation under constant load, known as creep. This process occurs when a fiber is loaded above the yield value and continues over several logarithmic decades of time. The extension under fixed load, or creep, is analogous to the relaxation of stress under fixed extension. Stress relaxation is the process whereby the stress that is generated as a result of a deformation is dissipated as a function of time. Both of these time dependent processes are reflections of plastic flow resulting from various molecular motions in the fiber. As a direct consequence of creep and stress relaxation, the shape of a stress—strain curve is in many cases strongly dependent on the rate of deformation, as is illustrated in Figure 6. [Pg.271]

A web of molten plastic is pulled from the die into the nip between the top and middle roUs. At the nip, there is a very small rolling bank of melt. Pressure between the roUs is adjusted to produce sheet of the proper thickness and surface appearance. The necessary amount of pressure depends on the viscosity. For a given width, thickness depends on the balance between extmder output rate and the take-off rate of the pull roUs. A change in either the extmder screw speed or the puU-roU speed affects thickness. A constant thickness across the sheet requires a constant thickness of melt from the die. The die is equipped with bolts for adjusting the die-gap opening and with an adjustable choker bar or dam located inside the die a few centimeters behind the die opening. The choker bar restricts flow in the center of the die, helping to maintain a uniform flow rate across the entire die width. [Pg.140]

Non-Newtonian Flow For isothermal laminar flow of time-independent non-Newtonian hquids, integration of the Cauchy momentum equations yields the fully developed velocity profile and flow rate-pressure drop relations. For the Bingham plastic flmd described by Eq. (6-3), in a pipe of diameter D and a pressure drop per unit length AP/L, the flow rate is given by... [Pg.639]

Suspensions of fine sohds may have pseudoplastic or plastic-flow properties. When they are in laminar flow in a stirred vessel, motion in remote parts of the vessel where shear rates are low may become negligible or cease completely. To compensate for this behavior of slurries, large-diameter impellers or paddles are used, with (D /Df) > 0.6, where Df is the tank diameter. In some cases, for example, with some anchors, > 0.95 Df. Two or more paddles may be used in deep tanks to avoid stagnant regions in slurries. [Pg.1630]

Metals Successful applications of metals in high-temperature process service depend on an appreciation of certain engineering factors. The important alloys for service up to I,I00°C (2,000°F) are shown in Table 28-35. Among the most important properties are creep, rupture, and short-time strengths (see Figs. 28-23 and 28-24). Creep relates initially applied stress to rate of plastic flow. Stress... [Pg.2464]

An example of research in the micromechanics of shock compression of solids is the study of rate-dependent plasticity and its relationship to crystal structure, crystal orientation, and the fundamental unit of plasticity, the dislocation. The majority of data on high-rate plastic flow in shock-compressed solids is in the form of ... [Pg.217]

Wallace [15], [16] gives details on effects of nonlinear material behavior and compression-induced anisotropy in initially isotropic materials for weak shocks, and Johnson et ai. [17] give results for infinitesimal compression of initially anisotropic single crystals, but the forms of the equations are the same as for (7.10)-(7.11). From these results it is easy to see where the micromechanical effects of rate-dependent plastic flow are included in the analysis the micromechanics (through the mesoscale variables and n) is contained in the term y, as given by (7.1). [Pg.223]

BRs were found to have a rate-sensitive mechanical response with very low tensile and shear strengths [63]. The stress-strain curves of the adhesives were characterized by an initial elastic response followed by a region of large plastic flow. [Pg.653]

Hot water basins are used to distribute water in crossflow towers. Here, water is pumped to an open pan over the wet deck fill. The bottom of the pan has holes through which water is distributed. Manufacturers will fit specially shaped plastic drip orifices into the holes to give the water an umbrella shape for more uniform distribution. Different size orifices are used for different flow rates. Ideally, the basin will be almost full at maximum flow. This way, sufficient depth is retained for good water distribution as turn down occurs. The turn down ratio can be extended by the addition of hot water basin weirs- a pattern of baffles perhaps 2... [Pg.78]

It is possible to make a simple estimate of the orientation in blown film by considering only the effects due to the inflation of the bubble. Since the volume flow rate is the same for the plastic in the die and in the bubble, then for unit time... [Pg.267]

T] = viscosity of the plastic L = length of channel Q = volume flow rate R = radius of channel... [Pg.289]

In this apparatus the plastic to be tested is heated in a barrel and then forced through a capillary die as shown in Fig. 5.16, Normally the ram moves at a constant velocity to give a constant volume flow rate, Q. From this it is conventional to calculate the shear rate from the Newtonian flow expression. [Pg.371]

The old, tedious, but quite reliable method is to measure the supply flow by the bag method. A tightly rolled plastic bag empty of air at the commencement of the test is pressed on the terminal with all the supply air passing into the bag. The filling time of the bag is measured and the flow rate calculated based on this information. The bag volume has to be determined in advance by a special measurement. Finally, the characteristic pressure difference method, menrumed above, can also be applied to supply terminals. [Pg.1168]

The first area covers low volumetric flow rates, and entrance pressures below Pcr. This sector of two-phase flow in the molding machine is characterized by a complex non-linear dependence of reduced pressure on reduced volumetric flow rate. The structure of foam plastics obtained in this way was called shell structure by the authors in [20, 21] — the extrudate contains huge shell bubbles which are comparable to its section. As CBA concentration increases, or medium volumetric flow rate is increased at low CBA concentration, small bubbles materialize in the melt around the shell bubbles, and the structure becomes shell-bubble . Increase of the volumetric flow rate and the concentration of flowing agent neutralizes the difference in bubble size their lateral dimensions become smaller than their longitudinal ones. [Pg.117]


See other pages where Plastic flow rates is mentioned: [Pg.319]    [Pg.199]    [Pg.3967]    [Pg.3967]    [Pg.370]    [Pg.727]    [Pg.732]    [Pg.319]    [Pg.199]    [Pg.3967]    [Pg.3967]    [Pg.370]    [Pg.727]    [Pg.732]    [Pg.90]    [Pg.421]    [Pg.248]    [Pg.561]    [Pg.413]    [Pg.284]    [Pg.297]    [Pg.34]    [Pg.911]    [Pg.1435]    [Pg.266]    [Pg.221]    [Pg.140]    [Pg.200]    [Pg.250]    [Pg.110]    [Pg.384]    [Pg.859]    [Pg.864]    [Pg.224]    [Pg.210]    [Pg.675]    [Pg.1156]    [Pg.1296]    [Pg.76]   
See also in sourсe #XX -- [ Pg.588 ]




SEARCH



Plastic Flow (Plasticity)

© 2024 chempedia.info