Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Picosecond transient absorption spectroscop

A subsequent picosecond electronic absorption spectroscopic study of TPE excited with 266- or 355-nm, 30-ps laser pulses in cyclohexane found what was reported previously. However, in addition to the nonpolar solvent cyclohexane, more polar solvents such as THF, methylene chloride, acetonitrile, and methanol were employed. Importantly, the lifetime of S lp becomes shorter as the polarity is increased this was taken to be evidence of the zwitterionic, polar nature of TPE S lp and the stabilization of S lp relative to what is considered to be a nonpolar Sop, namely, the transition state structure for the thermal cis-trans isomerization. Although perhaps counterinmitive to the role of a solvent in the stabilization of a polar species, the decrease in the S lp lifetime with an increase in solvent polarity is understood in terms of internal conversion from to So, which should increase in rate as the S -So energy gap decreases with increasing solvent polarity. Along with the solvent-dependent hfetime of S lp, it was noted that the TPE 5ip absorption band near 425 nm is located where the two subchromophores— the diphenylmethyl cation and the diphenylmethyl anion—of a zwitterionic 5ip should be expected to absorb hght. A picosecond transient absorption study on TPE in supercritical fluids with cosolvents provided additional evidence for charge separation in 5ip. [Pg.893]

To study the excited state one may use transient absorption or time-resolved fluorescence techniques. In both cases, DNA poses many problems. Its steady-state spectra are situated in the near ultraviolet spectral region which is not easily accessible by standard spectroscopic methods. Moreover, DNA and its constituents are characterised by extremely low fluorescence quantum yields (<10 4) which renders fluorescence studies particularly difficult. Based on steady-state measurements, it was estimated that the excited state lifetimes of the monomeric constituents are very short, about a picosecond [1]. Indeed, such an ultrafast deactivation of their excited states may reduce their reactivity something which has been referred to as a "natural protection against photodamage. To what extent the situation is the same for the polymeric DNA molecule is not clear, but longer excited state lifetimes on the nanosecond time scale, possibly of excimer like origin, have been reported [2-4],... [Pg.471]

Precise measurements of the excited state lifetimes of the DNA constituents were not available till very recently, mainly due to the limited time resolution of conventional spectroscopic techniques. Studying the DNA nucleosides by transient absorption spectroscopy, Kohler and co-workers observed a very short-lived induced absorption in the visible which they assigned to the first excited state [5,6]. The lifetimes observed were all well below 1 picosecond. The first femtosecond fluorescence studies of DNA constituents were performed using the fluorescence upconversion technique. Peon and Zewail [7] reported that the excited state lifetimes of DNA/RNA nucleosides and nucleotides all fall in the subpicosecond time, thus corroborating the results obtained by transient absorption. [Pg.471]

Although the transient spectrum of a radical-ion pair was recorded in a picosecond-nanosecond time domain in the flash photolysis of Co(III) alkylcobalamins,123 there has been no direct spectroscopic observation of the LMCT excited states. The observed photochemical behavior may be simply described by the following sequence of events (1) absorption of radiation produces a Franck-Condon excited state, which (2) rapidly loses its excess vibrational energy (k > 10ns ) to form the thermalized excited state, followed by (3) product formation and internal conversion to the ground state. The existence of LMCT excited states with a finite lifetime in the... [Pg.256]

Picosecond spectroscopy enables one to observe ultrafast events in great detail as a reaction evolves. Most picosecond laser systems currently rely on optical multichannel detectors (OMCDs) as a means by which spectra of transient species and states are recorded and their formation and decay kinetics measured. In this paper, we describe some early optical detection methods used to obtain picosecond spectroscopic data. Also we present examples of the application of picosecond absorption and emission spectroscopy to such mechanistic problems as the photodissociation of haloaromatic compounds, the visual transduction process, and inter-molecular photoinitiated electron transfer. [Pg.201]

We summarize here two time-resolved spectroscopic methods, giving direct information on picosecond and nanosecond photodynamics of solid surface. One is a fluorescence spectroscopy which analyzes fluorescence behavior of the surface area excited by the evanescent laser pulse. The other is to get transient UV-visible absorption spectra by using the evanescent light as a probe beam. [Pg.15]


See other pages where Picosecond transient absorption spectroscop is mentioned: [Pg.178]    [Pg.371]    [Pg.178]    [Pg.371]    [Pg.126]    [Pg.113]    [Pg.71]    [Pg.156]    [Pg.230]    [Pg.266]    [Pg.894]    [Pg.132]    [Pg.130]    [Pg.1941]    [Pg.1988]    [Pg.623]    [Pg.230]    [Pg.280]    [Pg.230]    [Pg.68]    [Pg.629]    [Pg.5418]    [Pg.102]    [Pg.155]    [Pg.141]    [Pg.874]    [Pg.150]    [Pg.18]    [Pg.136]    [Pg.136]    [Pg.150]    [Pg.383]    [Pg.212]    [Pg.85]    [Pg.293]   
See also in sourсe #XX -- [ Pg.352 , Pg.364 ]




SEARCH



Absorption spectroscop

Picosecond

© 2024 chempedia.info