Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical property optimization

Factorial design methods cannot always be applied to QSAR-type studies. For example, i may not be practically possible to make any compounds at all with certain combination of factor values (in contrast to the situation where the factojs are physical properties sucl as temperature or pH, which can be easily varied). Under these circumstances, one woul( like to know which compounds from those that are available should be chosen to give well-balanced set with a wide spread of values in the variable space. D-optimal design i one technique that can be used for such a selection. This technique chooses subsets o... [Pg.713]

P Willett, J Bradshaw and D V S Green 1999. Selecting Combinatorial Libraries to Optimize rsity and Physical Properties. Journal of Chemical Information and Computer Science 39 169-177. 1 and A W R Payne 1995. A Genetic Algorithm for the Automated Generation of Molecules in Constraints. Journal of Computer-Aided Molecular Design 9 181-202. [Pg.738]

Composites can be created ia which the core optimizes desired physical properties such as modulus, whereas the outer layer optimizes surface coasideratioas aot inherent ia the core material. SoHd outer—foam core can provide composites with significant reductions ia specific gravity (0.7). Dry blowiag ageats can be "dusted" onto the peUets orHquid agents iajected iato the first transitioa sectioa of the extmder. [Pg.206]

Fiber stmcture is a dual or a balanced stmcture. Neither a completely amorphous stmcture nor a perfectly crystalline stmcture provides the balance of physical properties required in fibers. The formation and processing of fibers is designed to provide an optimal balance in terms of both stmcture and properties. Excellent discussions of the stmcture of fiber-forming polymers and general methods of the stmcture characterization are available (28—31). [Pg.272]

Siace most fabricated elastomer products contain 10—50 vol % of filler, their physical properties and processing characteristics depend to a great extent on the nature and quaUty of the fillers. Rubber technologists manipulate the formula so as to optimize a large number of properties and keep costs down. [Pg.369]

Density and polymer composition have a large effect on compressive strength and modulus (Fig. 3). The dependence of compressive properties on cell size has been discussed (22). The cell shape or geometry has also been shown important in determining the compressive properties (22,59,60,153,154). In fact, the foam cell stmcture is controlled in some cases to optimize certain physical properties of rigid cellular polymers. [Pg.412]

Electronic-Grade MMCs. Metal-matrix composites can be tailored to have optimal thermal and physical properties to meet requirements of electronic packaging systems, eg, cotes, substrates, carriers, and housings. A controUed thermal expansion space tmss, ie, one having a high precision dimensional tolerance in space environment, was developed from a carbon fiber (pitch-based)/Al composite. Continuous boron fiber-reinforced aluminum composites made by diffusion bonding have been used as heat sinks in chip carrier multilayer boards. [Pg.204]

Cycloahphatic diamines which have reacted with diacids to form polyamides generate performance polymers whose physical properties are dependent on the diamine geometric isomers. (58,74). Proprietary transparent thermoplastic polyadipamides have been optimized by selecting the proper mixtures of PDCHA geometric isomers (32—34) for incorporation (75) ... [Pg.212]

Molten sodium is injected into the retort at a prescribed rate and the temperature of the system is controlled by adjusting the furnace power or with external cooling. The variables that control the quaUty and physical properties of the powder are the reduction temperature and its uniformity, diluent type and concentration, sodium feed rate, and stirring efficiency. Optimizing a variable for one powder attribute can adversely affect another property. For example, a high reduction temperature tends to favor improved chemical quaUty but lowers the surface area of the powder. [Pg.327]

The fiber extraction (milling) process must be chosen so as to optimize recovery of the fibers in the ore, while minimizing reduction of fiber length. Since the asbestos fibers have a chemical composition similar to that of the host rock, the separation processes must rely on differences in the physical properties between the fibers and the host rock rather than on differences in their chemical properties (33). [Pg.352]

Thus, methods are now becoming available such that process systems can be designed to manufacture crystal products of desired chemical and physical properties and characteristics under optimal conditions. In this chapter, the essential features of methods for the analysis of particulate crystal formation and subsequent solid-liquid separation operations discussed in Chapters 3 and 4 will be recapitulated. The interaction between crystallization and downstream processing will be illustrated by practical examples and problems highlighted. Procedures for industrial crystallization process analysis, synthesis and optimization will then be considered and aspects of process simulation, control and sustainable manufacture reviewed. [Pg.261]

A clear understanding of feed physical properties is essential to successful work in the areas of troubleshooting, catalyst selection, unit optimization, and any planned revamp. [Pg.82]

The sum of squares as defined by Equation 7.8 is the general form for the objective function in nonlinear regression. Measurements are made. Models are postulated. Optimization techniques are used to adjust the model parameters so that the sum-of-squares is minimized. There is no requirement that the model represent a simple reactor such as a CSTR or isothermal PER. If necessary, the model could represent a nonisothermal PFR with variable physical properties. It could be one of the distributed parameter models in Chapters 8 or 9. The model... [Pg.211]

One of the most important phenomena in material science is the reinforcement of mbber by rigid entities, such as carbon black, clays, silicates, calcium carbonate, zinc oxide, MH, and metal oxide [45 7]. Thus, these fillers or reinforcement aids are added to mbber formulations to optimize properties that meet a given service application or sets of performance parameters [48-53]. Although the original purpose is to lower the cost of the molding compounds, prime importance is now attached to the selective active fillers and their quantity that produce specific improvements in mbber physical properties. [Pg.95]


See other pages where Physical property optimization is mentioned: [Pg.402]    [Pg.402]    [Pg.2543]    [Pg.214]    [Pg.206]    [Pg.367]    [Pg.350]    [Pg.466]    [Pg.432]    [Pg.257]    [Pg.415]    [Pg.504]    [Pg.95]    [Pg.316]    [Pg.195]    [Pg.84]    [Pg.515]    [Pg.291]    [Pg.486]    [Pg.483]    [Pg.1726]    [Pg.7]    [Pg.81]    [Pg.290]    [Pg.17]    [Pg.331]    [Pg.169]    [Pg.27]    [Pg.1023]    [Pg.38]    [Pg.110]    [Pg.195]    [Pg.348]    [Pg.50]    [Pg.622]    [Pg.181]   
See also in sourсe #XX -- [ Pg.80 , Pg.81 , Pg.82 , Pg.83 , Pg.84 , Pg.85 ]




SEARCH



© 2024 chempedia.info