Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties techniques

Since the isomers differ in their physical properties, techniques of distillation, crystallization or chromatography have been employed. [Pg.112]

Although isotopes have similar chemical properties, their slight difference in mass causes slight differences in physical properties. Use of this is made in isotopic separation pro cesses using techniques such as fractional distillation, exchange reactions, diffusion, electrolysis and electromagnetic methods. [Pg.228]

Chemical techniques change the physical properties of either the displacing fluid, or of the oil, and comprise of polymer flooding and surfactant flooding. [Pg.210]

As another example, we shall consider the influence of the number of descriptors on the quality of learning. Lucic et. al. [3] performed a study on QSPR models employing connectivity indices as descriptors. The dataset contained 18 isomers of octane. The physical property for modehng was boiling points. The authors were among those who introduced the technique of orthogonahzation of descriptors. [Pg.207]

Factorial design methods cannot always be applied to QSAR-type studies. For example, i may not be practically possible to make any compounds at all with certain combination of factor values (in contrast to the situation where the factojs are physical properties sucl as temperature or pH, which can be easily varied). Under these circumstances, one woul( like to know which compounds from those that are available should be chosen to give well-balanced set with a wide spread of values in the variable space. D-optimal design i one technique that can be used for such a selection. This technique chooses subsets o... [Pg.713]

Most of the techniques described in this Chapter are of the ab initio type. This means that they attempt to compute electronic state energies and other physical properties, as functions of the positions of the nuclei, from first principles without the use or knowledge of experimental input. Although perturbation theory or the variational method may be used to generate the working equations of a particular method, and although finite atomic orbital basis sets are nearly always utilized, these approximations do not involve fitting to known experimental data. They represent approximations that can be systematically improved as the level of treatment is enhanced. [Pg.519]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

It would clearly be desirable to extend the scope of the Kelvin method to include a range of adsorptives having varied physical properties, especially surface tension, molar volume, molecular shape and size. This would enable the validity of the method and its attendant assumptions to be tested more adequately, and would also allow a variation in experimental technique, for example by permitting measurements at 298 K rather than 77 K. [Pg.166]

An analyte and an interferent can be separated if there is a significant difference in at least one of their chemical or physical properties. Table 7.4 provides a partial list of several separation techniques, classified by the chemical or physical property that is exploited. [Pg.205]

The simplest physical property that can be exploited in a separation is size. The separation is accomplished using a porous medium through which only the analyte or interferent can pass. Filtration, in which gravity, suction, or pressure is used to pass a sample through a porous filter is the most commonly encountered separation technique based on size. [Pg.205]

J. A. Riddick, W. B. Bunger, and T. K. Sakano, "Organic Solvents, Physical Properties, and Methods of Purification," in Techniques of Organic Chemistry, Vol 2, John Wiley Sons, Inc., New York, 1986, p. 954. [Pg.100]

SAN resins possess many physical properties desked for thermoplastic appHcations. They are characteristically hard, rigid, and dimensionally stable with load bearing capabiHties. They are also transparent, have high heat distortion temperatures, possess exceUent gloss and chemical resistance, and adapt easily to conventional thermoplastic fabrication techniques (7). [Pg.191]

Most hydrocarbon resins are composed of a mixture of monomers and are rather difficult to hiUy characterize on a molecular level. The characteristics of resins are typically defined by physical properties such as softening point, color, molecular weight, melt viscosity, and solubiHty parameter. These properties predict performance characteristics and are essential in designing resins for specific appHcations. Actual characterization techniques used to define the broad molecular properties of hydrocarbon resins are Fourier transform infrared spectroscopy (ftir), nuclear magnetic resonance spectroscopy (nmr), and differential scanning calorimetry (dsc). [Pg.350]

In addition to time-related effects, the soUd-state physical properties are also affected by adsorbed water, which functions as a plasticizer. Water pickup is affected by the nature of the cation, with sodium ionomers absorbing about 10 times the level of the zinc equivalent (6) under the same conditions. Drying must be carried out at temperatures below 100°C and is therefore a slow process. In commercial practice, ionomers are suppUed dry, and techniques have been developed to minimize moisture absorption during processing. [Pg.406]

Commercial mesityl oxide can contain 5—20% of the P,y-unconjugated isomer isomesityl oxide [141-79-7] (4-meth5l-4-pentene-2-one). At equihbrium, the mixture contains 91% of the a,P-mesityl oxide and 9% of the P,y-isomer (174—176). Kquilihrium is cataly2ed by either acid or alkaU. Techniques to isolate the isomers have been reported (174,176), and some physical properties of isomesityl oxide are reported ia Table 1. [Pg.494]

Standards have been a part of technology since building began, both at a scale that exceeded the capabiUties of an individual, and for a market other than the immediate family. Standardization minimizes disadvantageous diversity, assures acceptabiUty of products, and faciUtates technical communication. There are many attributes of materials that are subject to standardization, eg, composition, physical properties, dimensions, finish, and processing. Implicit to the realization of standards is the availabiUty of test methods and appropriate caUbration techniques. Apart from physical or artifactual standards, written or paper standards also must be considered, ie, their generation, promulgation, and interrelationships. [Pg.17]

Impurities in cmde metal can occur as other metals or nonmetals, either dissolved or in some occluded form. Normally, impurities are detrimental, making the metal less useful and less valuable. Sometimes, as in the case of copper, extremely small impurity concentrations, eg, arsenic, can impart a harmful effect on a given physical property, eg, electrical conductivity. On the other hand, impurities may have commercial value. For example, gold, silver, platinum, and palladium, associated with copper, each has value. In the latter situation, the purity of the metal is usually improved by some refining technique, thereby achieving some value-added and by-product credit. [Pg.159]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]


See other pages where Physical properties techniques is mentioned: [Pg.178]    [Pg.228]    [Pg.53]    [Pg.178]    [Pg.228]    [Pg.53]    [Pg.3]    [Pg.1264]    [Pg.2409]    [Pg.2502]    [Pg.366]    [Pg.443]    [Pg.214]    [Pg.392]    [Pg.487]    [Pg.102]    [Pg.1192]    [Pg.271]    [Pg.235]    [Pg.99]    [Pg.139]    [Pg.206]    [Pg.277]    [Pg.423]    [Pg.426]    [Pg.288]    [Pg.314]    [Pg.385]    [Pg.458]    [Pg.215]    [Pg.19]    [Pg.402]    [Pg.342]   
See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Group contribution techniques physical properties predicted

Group contribution techniques, physical propertie

Group contribution techniques, physical properties

Group contribution techniques, physical properties predicted using

Swollen Rubbery Materials Chemistry and Physical Properties Studied by NMR Techniques

Techniques for the study of physical properties

© 2024 chempedia.info