Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical electrolytes

E. Riande, Transport Phenomena in Ion-Exchange Membranes, In H. Jean (ed.). Physical Electrolytes, Academic Press, NewYork (1972), p. 401. [Pg.373]

H. S. Hamed and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York, 1950. [Pg.218]

The deterrnination of impurities in the hehum-group gases is also accompHshed by physical analytical methods and by conventional techniques for measuring the impurity in question (93), eg, galvanic sensors for oxygen, nondispersive infrared analysis for carbon dioxide, and electrolytic hygrometers for water. [Pg.14]

The popularity of MSA as an electrolyte in electrochemical appHcations has developed as a result of the following unique physical and chemical properties (/) exhibits low corrosivity and is easy to handle, (2) nonoxidizing, (7) manufacturing process yields a high purity acid, (4) exceptional electrical conductivity, (3) high solubiHty of metal salts permits broad appHcations, (6) MSA-based formulations are simpler, (7) biodegradable, and (8) highly stable to heat and electrical current. [Pg.154]

Separator s a physical barrier between the positive and negative electrodes incorporated into most cell designs to prevent electrical shorting. The separator can be a gelled electrolyte or a microporous plastic film or other porous inert material filled with electrolyte. Separators must be permeable to ions and inert in the battery environment. [Pg.506]

The physical picture in concentrated electrolytes is more apdy described by the theory of ionic association (18,19). It was pointed out that as the solutions become more concentrated, the opportunity to form ion pairs held by electrostatic attraction increases (18). This tendency increases for ions with smaller ionic radius and in the lower dielectric constant solvents used for lithium batteries. A significant amount of ion-pairing and triple-ion formation exists in the high concentration electrolytes used in batteries. The ions are solvated, causing solvent molecules to be highly oriented and polarized. In concentrated solutions the ions are close together and the attraction between them increases ion-pairing of the electrolyte. Solvation can tie up a considerable amount of solvent and increase the viscosity of concentrated solutions. [Pg.509]

A slight excess of calcium is used and the exothermic reaction, carried out in a tantalum cmcible, is initiated at - 900° C. After physical separation of the upper layer of immiscible fluoride slag, vacuum distillation removes unreacted volatile Ca. Cerium can also be made by the electrolytic reduction of fused chloride. [Pg.368]

Step 4 deals with physical and chemical properties of compounds and mixtures. Accurate physical and chemical properties ate essential to achieve accurate simulation results. Most simulators have a method of maintaining tables of these properties as well as computet routines for calculations for the properties by different methods. At times these features of simulators make them suitable or not suitable for a particular problem. The various simulators differ ia the number of compounds ia the data base number of methods for estimating unknown properties petroleum fractions characterized electrolyte properties handled biochemical materials present abiUty to handle polymers and other complex materials and the soflds, metals, and alloys handled. [Pg.73]

Distillation appHcations can be characterized by the type of materials separated, such as petroleum appHcations, gas separations, electrolyte separations, etc. These appHcations have specific characteristics in terms of the way or the correlations by which the physical properties are deterrnined or estimated the special configurations of the process equipment such as having side strippers, multiple product withdrawals, and internal pump arounds the presence of reactions or two Hquid phases etc. Various distillation programs can model these special characteristics of the appHcations to varying degrees and with more or less accuracy and efficiency. [Pg.78]

Although polyacetylene has served as an excellent prototype for understanding the chemistry and physics of electrical conductivity in organic polymers, its instabiUty in both the neutral and doped forms precludes any useful appHcation. In contrast to poly acetylene, both polyaniline and polypyrrole are significantly more stable as electrical conductors. When addressing polymer stabiUty it is necessary to know the environmental conditions to which it will be exposed these conditions can vary quite widely. For example, many of the electrode appHcations require long-term chemical and electrochemical stabihty at room temperature while the polymer is immersed in electrolyte. Aerospace appHcations, on the other hand, can have quite severe stabiHty restrictions with testing carried out at elevated temperatures and humidities. [Pg.43]

The essential components of an electroplating process are an electrode to be plated (the cathode) a second electrode to complete the circuit (the anode) an electrolyte containing the metal ions to be deposited and a d-c power source. The electrodes are immersed in the electrolyte such that the anode is coimected to the positive leg of the power supply and the cathode to the negative. As the current is increased from 2ero, a minimum point is reached where metal plating begins to take place on the cathode. The physics of this process has been the topic of many studies, and several theories have been proposed. A discussion of these theories can be found elsewhere (19). [Pg.145]

Figure 16.1 Simple dry cell battery. Electrons are conducted along the external circuit (4), which physically connects the active (2) and noble (1) materials. An equivalent ionic counter-current is conducted through the electrolyte (3), thereby completing the circuit. Figure 16.1 Simple dry cell battery. Electrons are conducted along the external circuit (4), which physically connects the active (2) and noble (1) materials. An equivalent ionic counter-current is conducted through the electrolyte (3), thereby completing the circuit.
In the ceramics field many of the new advanced ceramic oxides have a specially prepared mixture of cations which determines the crystal structure, through the relative sizes of the cations and oxygen ions, and the physical properties through the choice of cations and tlreh oxidation states. These include, for example, solid electrolytes and electrodes for sensors and fuel cells, fenites and garnets for magnetic systems, zirconates and titanates for piezoelectric materials, as well as ceramic superconductors and a number of other substances... [Pg.234]

GORDON, M., High Polymers—Structure and Physical Properties, Iliffe, London, 2nd Edn (1963) HILDEBRAND, J., and scoiT, R., The Solubility of Non-Electrolytes, Reinhold, New York, 3rd Edn (1949)... [Pg.109]

It is interesting to note that the amino acid side chains may be either neutral as in valine, acidic as in glutamic acid or basic as in lysine. The presence of both acidic and basic side chains leads to proteins such as casein acting as amphoteric electrolytes and their physical behaviour will depend on the pH of the environment in which the molecules exist. This is indicated by Figure 30.2, showing a simplified protein molecule with just one acidic and one basic side group. [Pg.854]


See other pages where Physical electrolytes is mentioned: [Pg.34]    [Pg.112]    [Pg.128]    [Pg.592]    [Pg.598]    [Pg.512]    [Pg.575]    [Pg.582]    [Pg.150]    [Pg.151]    [Pg.502]    [Pg.144]    [Pg.385]    [Pg.317]    [Pg.560]    [Pg.153]    [Pg.167]    [Pg.258]    [Pg.237]    [Pg.527]    [Pg.528]    [Pg.509]    [Pg.523]    [Pg.557]    [Pg.110]    [Pg.396]    [Pg.78]    [Pg.203]    [Pg.244]    [Pg.276]    [Pg.134]    [Pg.135]    [Pg.834]    [Pg.844]    [Pg.944]   
See also in sourсe #XX -- [ Pg.612 ]




SEARCH



Electrode-electrolyte interface, chemical physics

Physical electrolytic process

© 2024 chempedia.info