Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phthalocyanine, structure Subject

The V02+ phthalocyanine [VO(pc)] has been the subject of patents as it is useful in photoelectrophoretic and xerographic imaging.887 It can exist in at least three solid phases888 and the structure of so-called phase II was determined.889 It is composed of sheets of parallel and overlapping [VO(pc)] molecules and no discrete dimer pair exists. The vanadium is five-coordinate and square pyramidal, and is 0.575 A above the plane of the four nitrogens. The V—N distances do not differ significantly with a mean of 2.026 A the V=0 distance is 1 1.580 A. [Pg.559]

The subject matter of this chapter will be subdivided into sections concerning template synthesis of the complexes structural and thermodynamic properties of the complexes with synthetic cyclic polyamines complexes with mixed-donor macrocycles reactivity of the complexes cryptates and complexes with phthalocyanines and porphyrins. [Pg.226]

Molecular self-assembly will not be considered here (see [9.2]) in fact, it is a special type of synthetic procedure where several reactions between several reagents occur in one experimental operation to yield the final covalent structure it is subject to control by the intramolecular conformational features of intermediates and by the stereochemistry of the reaction(s) the efficient assembly of a covalent structure may require that the connecting reaction(s) be reversible so as to allow searching for the final structure. Examples are found in the generation of macropolycyclic structures by multiple (amine-aldehyde) condensations (see Section 4.1) or of porphyrinogens, porphyrins and phthalocyanins (see also in [9.13a]. [Pg.140]

The present article reviews the photochemical deactivation modes and properties of electronically excited metallotetrapyrroles. Of the wide variety of complexes possessing a tetrapyrrole ligand and their highly structured systems, the subject of this survey is mainly synthetic complexes of porphyrins, chlorins, corrins, phthalocyanines, and naphthalocyanines. All known types of photochemical reactions of excited metallotetrapyrroles are classified. As criteria for the classification, both the nature of the primary photochemical step and the net overall chemical change, are taken. Each of the classes is exemplified by several recent results, and discussed. The data on exciplex and excimer formation processes involving excited metallotetrapyrroles are included. Various branches of practical utilization of the photochemical and photophysical properties of tetrapyrrole complexes are shown. Motives for further development and perspectives in photochemistry of metallotetrapyrroles are evaluated. [Pg.135]

The present article will focus in particular on structurally characterized complexes and will refer to current trends and potential applications, simultaneously aiming at a coherent picture of the entire family of organometallic lanthanide amides including the inorganic derivatives. The elements Sc, Y, La will be treated as lanthanide elements Ln. Previous reviews cover this subject mostly as an aspect wrapped up under a comprehensive depiction of both metal amides [19] and lanthanide chemistry [20]. Other articles focus on special topics in this field, e.g., inorganic amides [21], silylamides [22], phthalocyanines [23] or porphyrins [24],... [Pg.38]

In 1928, at Grangemouth, Scotland, at the works of Messrs. Scottish Dyes Ltd., traces of a dark blue insoluble complex were noticed in the iron vessels used to prepare phthalimide from phthalic anhydride and ammonia (65, 221). This product was subsequently shown to be ferrous phthalo-cyanine. Since then literally thousands of patents and publications concerning the phthalocyanines have appeared. It is probable that the phthalocyanines have been the subject of more physical studies than any other single class of compound, partly as a result of their unique structure and partly because of their high thermal and chemical stability. [Pg.28]

In such a large subject, this article can only focus on certain aspects, namely those that involve complexation with inorganic substrates. We only consider the synthetic macrocycles, with emphasis on transition metal complexation. Aza, oxa, and, to a lesser extent, thia and phospha macrocycles are also covered. The naturally occurring porphyrins, corrins, corphins, chlorins, and phthalocyanins, as well as the cyclodextrins, are not included. Because of the general complexity of macrocyclic systems and the resulting complicated systematic names, commonly used abbreviations or simplified names will be employed. This review will encompass the synthesis, thermodynamics, structure, and applications of macrocyclic ligands. [Pg.2417]

Consequently, electroconductivity (including the many papers of Hanack ) and photovoltaic characteristics are not mentioned. The development of new phthalocyanine compounds with expanded pi-electron systems, such as two-dimensionally polymerized phthalocyanine compounds and dendritic structures, are also outside the scope of this subject matter. [Pg.277]


See other pages where Phthalocyanine, structure Subject is mentioned: [Pg.530]    [Pg.98]    [Pg.435]    [Pg.393]    [Pg.409]    [Pg.116]    [Pg.31]    [Pg.40]    [Pg.87]    [Pg.30]    [Pg.2135]    [Pg.40]    [Pg.230]    [Pg.2134]    [Pg.6185]    [Pg.1073]    [Pg.140]    [Pg.108]   
See also in sourсe #XX -- [ Pg.498 ]

See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Phthalocyanine, structure

Phthalocyanines Subject

Phthalocyanines structure

Subject structural

© 2024 chempedia.info