Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photosynthetic reaction center reduction

Cytochromes, catalases, and peroxidases all contain iron-heme centers. Nitrite and sulfite reductases, involved in N-O and S-O reductive cleavage reactions to NH3 and HS-, contain iron-heme centers coupled to [Fe ] iron-sulfur clusters. Photosynthetic reaction center complexes contain porphyrins that are implicated in the photoinitiated electron transfers carried out by the complexes. [Pg.372]

Bacterial photosynthesis. What is the relationship of the Z scheme of Fig. 23-17 to bacterial photosyntheses In photoheterotrophs, such as the purple Rhodospirillum, organic compounds, e.g., succinate, serve as electron donors in Eq. 23-30. Because they can utilize organic compounds for growth, these bacteria have a relatively low requirement for NADPH or other photochemically generated reductants and a larger need for ATP. Their photosynthetic reaction centers receive electrons via cytochrome c from succinate (E° ... [Pg.1301]

Figure 1. The major transmembrane photosynthetic reaction centers (RC) (top) and respiratory complexes (bottom) are composed of light (zigzag) activated chains (dark gray) of redox centers (open polygons) that create a transmembrane electric field and move protons (double arrows) to create a transmembrane proton gradient, fulfilling the requirements of Mitchell s chemiosmotic hypothesis. Diffusing substrates include ubiquinone (hexagon) and other sources of oxidants and reductants. PSI and PSII, photosystems I and II, respectively. Figure 1. The major transmembrane photosynthetic reaction centers (RC) (top) and respiratory complexes (bottom) are composed of light (zigzag) activated chains (dark gray) of redox centers (open polygons) that create a transmembrane electric field and move protons (double arrows) to create a transmembrane proton gradient, fulfilling the requirements of Mitchell s chemiosmotic hypothesis. Diffusing substrates include ubiquinone (hexagon) and other sources of oxidants and reductants. PSI and PSII, photosystems I and II, respectively.
Photosynthetic reaction centers plug into the chemiosmotic scheme by using light-excited states to create both an oxidant and a reductant. For the purple bacterial reaction centers, these oxidants and reductants are the redox carriers already described, oxidized cytochrome c and reduced ubiquinone QH2. Thus, in combination with Complex III, light drives a relatively straightforward cyclic electron transfer that generates a transmembrane electric field and proton gradient. [Pg.1690]

Figure 18. In [2]catenane 20 + [86], upon excitation of its [Rutbpy), p moiety, a very fast electron transfer process to a bipyridinium unit occurs. Owing to the catenane structure, the two bipyridinium units do not possess the same reduction potential (half-wave potential values versus SCE for the inside and outside units are indicated) such a redox asymmetry could mimic that of the cofactors in the bacterial photosynthetic reaction center. Figure 18. In [2]catenane 20 + [86], upon excitation of its [Rutbpy), p moiety, a very fast electron transfer process to a bipyridinium unit occurs. Owing to the catenane structure, the two bipyridinium units do not possess the same reduction potential (half-wave potential values versus SCE for the inside and outside units are indicated) such a redox asymmetry could mimic that of the cofactors in the bacterial photosynthetic reaction center.
RK Clayton and SC Straley (1970) An opticai absorption change thatcouidbe due to reduction of the primary photochemicai eiectron acceptor in photosynthetic reaction centers. Biochem Biophys Res Commun 39 1114-1119... [Pg.110]

Fig. 6. Photochemical cycles showing coupling of electron transfer to proton transfer, cytochrome oxidation and quinone exchange in (A) native reaction centers where two Cyt c are oxidized in the cycie, (B) reaction centers where uptake of the first proton is inhibited, and (C) reaction centers where uptake ofthe second proton is inhibited (shading indicates the quinone pool). Figure source (A) Paddock, Rongey, McPherson, Juth, Feher and Okamura (1994) Pathway of proton transfer in bacterial reaction centers role of aspartate-L21Z in proton transfers associated with reduction of quinone to dihydroquinone. Biochemistry 33 734 (B) Okamura and Feher (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochemistry. 61 868 (C) Feher, Paddock, Rongey and Okamura (1992) Proton transfer pathways in photosynthetic reaction centers studied by site-directed mutagenesis. In A Pullman, J Jortner and B Pullman (eds) Membrane Proteins Structures, Interactions and Models, p 485. Kluwer. Fig. 6. Photochemical cycles showing coupling of electron transfer to proton transfer, cytochrome oxidation and quinone exchange in (A) native reaction centers where two Cyt c are oxidized in the cycie, (B) reaction centers where uptake of the first proton is inhibited, and (C) reaction centers where uptake ofthe second proton is inhibited (shading indicates the quinone pool). Figure source (A) Paddock, Rongey, McPherson, Juth, Feher and Okamura (1994) Pathway of proton transfer in bacterial reaction centers role of aspartate-L21Z in proton transfers associated with reduction of quinone to dihydroquinone. Biochemistry 33 734 (B) Okamura and Feher (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochemistry. 61 868 (C) Feher, Paddock, Rongey and Okamura (1992) Proton transfer pathways in photosynthetic reaction centers studied by site-directed mutagenesis. In A Pullman, J Jortner and B Pullman (eds) Membrane Proteins Structures, Interactions and Models, p 485. Kluwer.
Fig. 6. Electron-transfer reactions occurring between the primary and secondary quinone acceptors, Qa and Qb, respectively. D stands for the electron donor to P. AB(1) and AB(2) represent the reduction of Qg by Qa and Qb by Qa , respectively. H (1) and H (2) indicate the first and second protonation steps associated with the formation of the Qb quinol. Q and QHj are quinone and quinol not closely associated with the reaction center. Figure adapted from Diner, Nixon and Farchaus (1991) Site-directed mutagenesis of photosynthetic reaction centers. Curr Opinion Struct Biol 1 548. Fig. 6. Electron-transfer reactions occurring between the primary and secondary quinone acceptors, Qa and Qb, respectively. D stands for the electron donor to P. AB(1) and AB(2) represent the reduction of Qg by Qa and Qb by Qa , respectively. H (1) and H (2) indicate the first and second protonation steps associated with the formation of the Qb quinol. Q and QHj are quinone and quinol not closely associated with the reaction center. Figure adapted from Diner, Nixon and Farchaus (1991) Site-directed mutagenesis of photosynthetic reaction centers. Curr Opinion Struct Biol 1 548.
Bidirectional PCET is also featured on the reduction side of the photosynthetic apparatus. In the bacterial photosynthetic reaction center, two sequential photo-induced ET reactions from the P680 excited state to a quinone molecule (Qg) are coupled to the uptake of two protons to form the hydroquinone [213-215]. This diffuses into the inter-membrane quinone pool and is re-oxidized at the Qq binding site of the cytochrome bcj and coupled to translocation of the protons across the membrane, thereby driving ATP production. These PCET reactions are best described by a Type D mechanism because the PCET of Qg appears to involve specifically engineered PT coordinates among amino acid residues [215]. In this case PT ultimately takes place to and from the bulk solvent. Coupling remains tight in... [Pg.552]

Aromatic residues have been found in proteins at positions that probably enhance the electronic coupling in systems that have been selected by evolution for efficient ET. Examples are the tryptophan mediated reduction of quinone in the photosynthetic reaction center (31), the methylamine dehydrogenase (MADH) amicyanin system, where a Trp residue is placed at the interface between the two proteins (32), as well as the [cytochrome c peroxidase-cytochrome c] complex, where a Trp seems to have a similar function (33). [Pg.16]

Simulating Thermochemistry of p-Benzo-quinone Reduction and Binding of Ubiquinone in the Photosynthetic Reaction Center... [Pg.51]

Energy re-distribution within and between the photosynthetic units — Excitation of the reaction centers —Reduction of to... [Pg.615]

The only known function of PhQ in cyanobacteria and plants is to function as an electron transfer cofactor in PS I. In spite of its importance in cyanobacteria, the biosynthetic route of PhQ was not previously elucidated. Many prokaryotes contain the metabolic pathway for the biosynthesis of menaquinone (MQ), a PhQ-Hke molecule (Figure 119.1). In certain bacteria, MQ is used during fumarate reduction in anaerobic respiration. - In green sulfur bacteria and in heliobacteria, MQ may function as a loosely bound secondary electron acceptor in the photosynthetic reaction center. The genes encoding enzymes involved in the conversion of chorismate to MQ were cloned in a variety of organisms. MQ differs from PhQ only in the tail portion of the molecule an unsaturated C-40 side chain is present, rather than a mostly saturated C-20 phytyl side chain. Therefore, the synthesis of the naphthalene rings in PhQ and MQ involves similar steps in both pathways. [Pg.2380]

The quantum yield of photosynthesis, the amount of product formed per equivalent of light input, has traditionally been expressed as the ratio of COg fixed or Og evolved per quantum absorbed. At each reaction center, one photon or quantum yields one electron. Interestingly, an overall stoichiometry of one translocated into the thylakoid vesicle for each photon has also been observed. Two photons per center would allow a pair of electrons to flow from HgO to NADP (Figure 22.12), resulting in the formation of 1 NADPH and Og. If one ATP were formed for every 3 H translocated during photosynthetic electron transport, 1 ATP would be synthesized. More appropriately, 4 hv per center (8 quanta total) would drive the evolution of 1 Og, the reduction of 2 NADP, and the phosphorylation of 2 ATP. [Pg.726]


See other pages where Photosynthetic reaction center reduction is mentioned: [Pg.598]    [Pg.549]    [Pg.100]    [Pg.217]    [Pg.6]    [Pg.52]    [Pg.3858]    [Pg.110]    [Pg.378]    [Pg.1970]    [Pg.2075]    [Pg.2560]    [Pg.686]    [Pg.123]    [Pg.9]    [Pg.122]    [Pg.4]    [Pg.51]    [Pg.54]    [Pg.63]    [Pg.324]    [Pg.3857]    [Pg.122]    [Pg.94]    [Pg.1964]    [Pg.40]    [Pg.41]    [Pg.581]    [Pg.3]    [Pg.262]    [Pg.194]   
See also in sourсe #XX -- [ Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 ]




SEARCH



Photosynthetic reaction center

Photosynthetic reactions

Reaction center

Reduction centers

© 2024 chempedia.info