Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photopolymerization, diacetylene

Keywords 1,6-bis(2,5-dimethoxyphenyl)hexa-2,4-diyne, photopolymerization, diacetylene, polydiacetylene... [Pg.172]

Photopolymerization reactions of monolayers have become of interest (note Chapter XV). Lando and co-workers have studied the UV polymerization of 16-heptadecenoic acid [311] and vinyl stearate [312] monolayers. Particularly interesting is the UV polymerization of long-chain diacetylenes. As illustrated in Fig. IV-30, a zipperlike process can occur if the molecular orientation in the film is just right (e.g., polymerization does not occur readily in the neat liquid) (see Refs. 313-315). [Pg.155]

Studies of the solid state photopolymerization of deposited multilayer films reveal that uv induced photopo1ymerizati0n of disubstituted diacetylenes... [Pg.20]

In both of these cases, the ligand (sialic acid) for the analyte of interest (influenza vims) was covalently linked to the PDA backbone generated upon photopolymerization. Functional sensors based on ligands that are noncovalently incorporated into liposomes have also been reported (Charych et al. 1996 Pan and Charych 1997). Mixed liposomes as well as mixed thin films on glass containing a combination of the ganglioside GMl and diacetylene lipids detect the presence of cholera toxin, a protein that binds to GMl. [Pg.313]

Convincing evidence for phase separation was obtained from the photopolymerization behavior of 6 in the mixed 6/DSPE monolayer films. Photopolymerization of diacetylenes is a topotactic process which requires the proper alignment of the 1,3-diyne moieties [35]. Thus diacetylenes typically polymerize rapidly in the solid state but not in solution. Polymerization is triggered by ultraviolet irradiation and proceeds via a 1,4-addition mechanism yielding a conjugated ene-yne backbone (Fig. 5). The reaction can be followed by the growth of the visible absorption band of the polymer. [Pg.62]

Condensed monolayer films of pure 6 polymerized rapidly, as did mixed 6/DSPE films of up to 75% DSPE, provided the monolayers were in the condensed state [33], In the liquid-expanded state, polymerization did not occur. In the condensed state, lateral diffusion of individual lipids within the monolayer is severely restricted compared to the liquid-like state. This precludes initiation of polymerization by diffusive encounter between excited-state and ground-state diacetylene lipids. In order for polymerization to occur in the condensed state, the film must be separated into domains consisting of either pure 6 or pure DSPE. A demonstration that the rates of photopolymerization for pure 6 and mixed 6/DSPE monolayers are equal would be a more stringent test for separate domains of the lipids, but no kinetic data have been reported for this system. [Pg.62]

Diacetylene monolayer photopolymerization was found to be topochemical it only occurred in the two-dimensional solid state of the surfactants. Polymerized diacetylenes, both in monolayers and in LB films, were found to be rather rigid and prone to cracking [160]. This undesirable property somewhat limits the exploitation of polymerized diacetylene LB films for potential electronic applications. [Pg.31]

The need for increased stabilities and for controllable permeabilities and morphologies led to the development of polymerized surfactant vesicles [55, 158-161]. Vesicle-forming surfactants haw been functionalized by vinyl, methacrylate, diacetylene, isocyano, and styrene groups in their hydrocarbon chains or headgroups. Accordingly, SUVs could be polymerized in their bilayers or across their headgroups. In the latter case, either the outer or both the outer and inner surfaces could be polymerized separately (Fig. 38). Photopolymerization links both surfaces selective polymerization of the external SUV surface is accomplished by the addition of a water-soluble initiator (potassium persulfate, for example) to the vesicle solution. [Pg.55]

First, a mixture of synthetic or natural phospholipids, polymerizable lipids, and proteins can be converted to liposomes and then be polymerized. Second, polymerizable lipids are introduced into e.g. erythrocyte ghost cells by controlled hemolysis and subsequent polymerization as described by Zimmermann et al.61). This hemolysis technique is based on a reversible dielectric breakdown of the cell membrane. Dielectric breakdown provides a third possible path to the production of bi omembrane models. Zimmermann et al. could show that under certain conditions cells can be fused with other cells or liposomes61). Thus, lipids from artificial liposomes could be incorporated into a cell membrane. A fourth approach has been published by Chapman et al.20). Bacterial cells incorporate polymerizable diacetylene fatty acids into their membrane lipids. The diacetylene units can be photopolymerized in vivo. The investigations discussed in more detail below are based on approaches 1. and 3. [Pg.30]

In contrast to this, the system neutral lipid (2J)/DSPC shows considerably smaller deviations from the additivity rule and the surface pressure/area isotherms indicate two collapse points corresponding to those of the pure components62. Photopolymerization can be carried out down to low monomer concentrations and no rate change is observed. These facts prove that the system (23)/DSPC is immiscible to a great extent. The same holds true for mixed films of diacetylenic lecithin (18, n = 12) with DSPC, as well as for dioleoylphosphatidylcholine (DOPC) as natural component. [Pg.32]

Since cholesterol is an important component of many biological membranes mixtures of polymerizable lipids with this sterol are of great interest. In mixed monolayers of natural lipids with cholesterol a pronounced condensation effect , i.e. a reduction of the mean area per molecule of phospholipid is observed68. This influence of cholesterol on diacetylenic lecithin (18, n = 12), however, is not very significant (Fig. 32). Photopolymerization indicates phase separation in this system. Apparently due to the large hydrophobic interactions between the long hydrocarbon chains of... [Pg.32]

Along a more biological approach, D. Chapman 116) has described the biosynthetic incorporation of diacetylene acids into the biomembranes of Acholeplasma laidlawii A, an unsaturated fatty acid auxotroph bacterium. As much as 90% of the membrane lipid acyl chains were found to consist of C20-diynoic acid. Upon irradiation with UV-light, the cells and isolated membranes become coloured, due to the crosslinking of lipids by photopolymerization. [Pg.57]


See other pages where Photopolymerization, diacetylene is mentioned: [Pg.160]    [Pg.160]    [Pg.156]    [Pg.149]    [Pg.209]    [Pg.237]    [Pg.162]    [Pg.331]    [Pg.360]    [Pg.365]    [Pg.264]    [Pg.223]    [Pg.62]    [Pg.62]    [Pg.64]    [Pg.167]    [Pg.123]    [Pg.177]    [Pg.155]    [Pg.143]    [Pg.166]    [Pg.215]    [Pg.175]    [Pg.181]    [Pg.114]    [Pg.118]    [Pg.147]    [Pg.203]    [Pg.63]    [Pg.101]    [Pg.231]    [Pg.149]    [Pg.225]    [Pg.219]    [Pg.3]   


SEARCH



Diacetylene

Diacetylenes

Photopolymerization

Photopolymerization diacetylenes

Photopolymerization diacetylenes

Photopolymerization of diacetylenes

Photopolymerization, diacetylene compounds

Topochemical photopolymerization of diacetylenes

© 2024 chempedia.info