Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photon multiphoton

Multiphoton processes are also undoubtedly involved in the photodegradation of polymers in intense laser fields, eg, using excimer lasers (13). Moreover, multiphoton excitation during pumping can become a significant loss factor in operation of dye lasers (26,27). The photochemically reactive species may or may not be capable of absorption of the individual photons which cooperate to produce multiphoton excitation, but must be capable of utilising a quantum of energy equal to that of the combined photons. Multiphoton excitation thus may be viewed as an exception to the Bunsen-Roscoe law. [Pg.389]

Some recent advances in stimulated desorption were made with the use of femtosecond lasers. For example, it was shown by using a femtosecond laser to initiate the desorption of CO from Cu while probing the surface with SHG, that the entire process is completed in less than 325 fs [90]. The mechanism for this kind of laser-induced desorption has been temied desorption induced by multiple electronic transitions (DIMET) [91]. Note that the mechanism must involve a multiphoton process, as a single photon at the laser frequency has insufScient energy to directly induce desorption. DIMET is a modification of the MGR mechanism in which each photon excites the adsorbate to a higher vibrational level, until a suflBcient amount of vibrational energy has been amassed so that the particle can escape the surface. [Pg.313]

Another example of a teclmique for detecting absorption of laser radiation in gaseous samples is to use multiphoton ionization with mtense pulses of light. Once a molecule has been electronically excited, the excited state may absorb one or more additional photons until it is ionized. The electrons can be measured as a current generated across the cell, or can be counted individually by an electron multiplier this can be a very sensitive technique for detecting a small number of molecules excited. [Pg.1123]

All the previous discussion in this chapter has been concerned with absorption or emission of a single photon. However, it is possible for an atom or molecule to absorb two or more photons simultaneously from a light beam to produce an excited state whose energy is the sum of the energies of the photons absorbed. This can happen even when there is no intemrediate stationary state of the system at the energy of one of the photons. The possibility was first demonstrated theoretically by Maria Goppert-Mayer in 1931 [29], but experimental observations had to await the development of the laser. Multiphoton spectroscopy is now a iisefiil technique [30, 31]. [Pg.1146]

Three-photon absorption has also been observed by multiphoton ionization, giving Rydberg states of atoms or molecules [36]. Such states usually require vacuum ultraviolet teclmiques for one-photon spectra, but can be done with a visible or near-ultraviolet laser by tluee-photon absorption. [Pg.1147]

One-photon excitation has lunitations due to the unwanted out-of-focus fliiorophore absorption and bleaching, and light scattering. These drawbacks can be circumvented if multiphoton excitation of the fliiorophore is used. Since it increases with the nth power of the photon density, significant absorption of the exciting light will only occur at the focal point of the objective where the required high photon density for absorption is reached. Consequently, only... [Pg.1672]

The conmron flash-lamp photolysis and often also laser-flash photolysis are based on photochemical processes that are initiated by the absorption of a photon, hv. The intensity of laser pulses can reach GW cm or even TW cm, where multiphoton processes become important. Figure B2.5.13 simnnarizes the different mechanisms of multiphoton excitation [75, 76, 112], The direct multiphoton absorption of mechanism (i) requires an odd number of photons to reach an excited atomic or molecular level in the case of strict electric dipole and parity selection rules [117],... [Pg.2130]

The Goeppert-Mayer two- (or multi-) photon absorption, mechanism (ii), may look similar, but it involves intennediate levels far from resonance with one-photon absorption. A third, quasi-resonant stepwise mechanism (iii), proceeds via smgle- photon excitation steps involvmg near-resonant intennediate levels. Finally, in mechanism (iv), there is the stepwise multiphoton absorption of incoherent radiation from themial light sources or broad-band statistical multimode lasers. In principle, all of these processes and their combinations play a role in the multiphoton excitation of atoms and molecules, but one can broadly... [Pg.2130]

The record m the number of absorbed photons (about 500 photons of a CO2 laser) was reached with the CgQ molecule [77]. This case proved an exception in that the primary reaction was ionization. The IR multiphoton excitation is the starting pomt for a new gas-phase photochemistry, IR laser chemistry, which encompasses numerous chemical processes. [Pg.2131]

B) The multiphoton excitation of electronic levels of atoms and molecules with visible or UV radiation generally leads to ionization. The mechanism is generally a combination of direct, Goeppert-Mayer, and quasi-resonant stepwise processes. Since ionization often requires only two or tln-ee photons, this type of multiphoton excitation is used for spectroscopic purposes in combination with mass-spectrometric detection of ions. [Pg.2131]

B2.5.351 after multiphoton excitation via the CF stretching vibration at 1070 cm. More than 17 photons are needed to break the C-I bond, a typical value in IR laser chemistry. Contributions from direct absorption (i) are insignificant, so that the process almost exclusively follows the quasi-resonant mechanism (iii), which can be treated by generalized first-order kinetics. As an example, figure B2.5.15 illustrates the fonnation of I atoms (upper trace) during excitation with the pulse sequence of a mode-coupled CO2 laser (lower trace). In addition to the mtensity, /, the fluence, F, of radiation is a very important parameter in IR laser chemistry (and more generally in nuiltiphoton excitation) ... [Pg.2131]

Figure B2.5.13. Schematic representation of the four different mechanisms of multiphoton excitation (i) direct, (ii) Goeppert-Mayer (iii) quasi-resonant stepwise and (iv) incoherent stepwise. Full lines (right) represent the coupling path between the energy levels and broken arrows the photon energies with angular frequency to (Aco is the frequency width of the excitation light in the case of incoherent excitation), see also [111]. Figure B2.5.13. Schematic representation of the four different mechanisms of multiphoton excitation (i) direct, (ii) Goeppert-Mayer (iii) quasi-resonant stepwise and (iv) incoherent stepwise. Full lines (right) represent the coupling path between the energy levels and broken arrows the photon energies with angular frequency to (Aco is the frequency width of the excitation light in the case of incoherent excitation), see also [111].
In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Figure B2.5.16. Different multiphoton ionization schemes. Each scheme is classified according to the number of photons that lead to resonant intennediate levels and to the ionization continuum (liatched area). Adapted from [110]. Figure B2.5.16. Different multiphoton ionization schemes. Each scheme is classified according to the number of photons that lead to resonant intennediate levels and to the ionization continuum (liatched area). Adapted from [110].
Two-photon excited fluorescence detection at the single-molecule level has been demonstrated for cliromophores in cryogenic solids [60], room-temperature surfaces [61], membranes [62] and liquids [63, 64 and 65]. Altliough multiphoton excited fluorescence has been embraced witli great entluisiasm as a teclmique for botli ordinary confocal microscopy and single-molecule detection, it is not a panacea in particular, photochemical degradation in multiphoton excitation may be more severe tlian witli ordinary linear excitation, probably due to absorjDtion of more tlian tire desired number of photons from tire intense laser pulse (e.g. triplet excited state absorjDtion) [61],... [Pg.2493]

Multiphoton ionization. Occurs when an atom or molecule and its associated ions have energy states in which they can absorb the energy in two or more photons. [Pg.439]

Figure 9.27 Multiphoton processes (a) Raman scattering, (b) absorption of two identical photons, (c) absorption of two different photons and (d) absorption of three identical photons. V and V are virtual states... Figure 9.27 Multiphoton processes (a) Raman scattering, (b) absorption of two identical photons, (c) absorption of two different photons and (d) absorption of three identical photons. V and V are virtual states...
Multiphoton Absorption and Ionization. High laser powers can induce the simultaneous absorption of two or more photons that together provide the energy necessary to excite a transition this transition may be one that is forbidden as a single-photon process (8,297). Such absorption can be made Doppler-free by propagating two laser beams of frequency V in opposite directions, so the Doppler shifts cancel and a two-photon transition occurs at 2v for any absorber velocity. The signal is strong because aU absorbers contribute, and peak ampHtudes are enhanced by, which may... [Pg.321]

The large variability in elemental ion yields which is typical of the single-laser LIMS technique, has motivated the development of alternative techniques, that are collectively labeled post-ablation ionization (PAI) techniques. These variants of LIMS are characterized by the use of a second laser to ionize the neutral species removed (ablated) from the sample surface by the primary (ablating) laser. One PAI technique uses a high-power, frequency-quadrupled Nd-YAG laser (A, = 266 nm) to produce elemental ions from the ablated neutrals, through nonresonant multiphoton ionization (NRMPI). Because of the high photon flux available, 100% ionization efflciency can be achieved for most elements, and this reduces the differences in elemental ion yields that are typical of single-laser LIMS. A typical analytical application is discussed below. [Pg.588]

Surface Analysis by Laser Ionization Post-Ionization Secondary Ion Mass Spectrometry Multi-Photon Nonresonant Post Ionization Multiphoton Resonant Post Ionization Resonant Post Ionization Multi-Photon Ionization Single-Photon Ionization... [Pg.768]

Figure 8.2e shows the dependence of the fluorescence intensity on the excitation power of the NIR light for the microcrystals measured with a 20x objective. In this plot, both axes are given in logarithmic scales. The slope of the dependence for the perylene crystal is 2.8, indicating that three-photon absorption is responsible for the florescence. On the other hand, slopes for the perylene and anthracene crystals are 3.9 for anthracene and 4.3 for pyrene, respectively. In these cases, four-photon absorption resulted in the formation of emissive excited states in the crystals. These orders of the multiphoton absorption are consistent with the absorption-band edges for each crystal. The four-photon absorption cross section for the anthracene crystal was estimated to be 4.0 x 10 cm s photons by comparing the four-photon induced fluorescence intensity of the crystal with the two-photon induced fluorescence intensity of the reference system (see ref. [3] for more detailed information). [Pg.136]


See other pages where Photon multiphoton is mentioned: [Pg.560]    [Pg.360]    [Pg.396]    [Pg.57]    [Pg.400]    [Pg.334]    [Pg.346]    [Pg.185]    [Pg.560]    [Pg.360]    [Pg.396]    [Pg.57]    [Pg.400]    [Pg.334]    [Pg.346]    [Pg.185]    [Pg.1330]    [Pg.1672]    [Pg.2492]    [Pg.120]    [Pg.134]    [Pg.135]    [Pg.399]    [Pg.371]    [Pg.372]    [Pg.321]    [Pg.42]    [Pg.529]    [Pg.562]    [Pg.573]    [Pg.373]    [Pg.5]    [Pg.195]    [Pg.342]    [Pg.354]    [Pg.368]    [Pg.134]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



Multiphoton

Two-photon and multiphoton absorption

© 2024 chempedia.info