Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoisomerization state

Fig. 27 (a) Optimized graphene sheet for the realization of a half-adder. Each logical input noted a and [i controls the photoisomerization state of one of the two stilbene groups. Depending on this isomerization state, the overall conductance of the molecule between the three electrodes is modified, (b) Current intensity calculated in the two output electrodes depending on the conformation of the stilbene groups... [Pg.259]

Another approach to the organization of integrated optoelectronic switches is schematically detailed in Fig. 23, and involves the organization of a photoisomerizable command interface on the solid support [86]. The command surface controls the interfacial electron transfer to a solution-state redox species. In one photoisomeric state, electron transfer to a redox probe solubilized in the electrolyte solution is prohibited (e.g. by repulsive interactions), whereas in the complementary state of the monolayer the interfacial electron transfer is allowed (e.g. because of associative interactions). Various interactions, such as electrostatic interactions, host-guest or donor-acceptor interactions, contribute to the selective contacting of the redox probe to one state of the photoisomerizable monolayer. [Pg.266]

According to Kramers model, for flat barrier tops associated with predominantly small barriers, the transition from the low- to the high-damping regime is expected to occur in low-density fluids. This expectation is home out by an extensively studied model reaction, the photoisomerization of tran.s-stilbene and similar compounds [70, 71] involving a small energy barrier in the first excited singlet state whose decay after photoexcitation is directly related to the rate coefficient of tran.s-c/.s-photoisomerization and can be conveniently measured by ultrafast laser spectroscopic teclmiques. [Pg.820]

Poliak E 1987 Transition state theory for photoisomerization rates of f/ a/rs-stilbene in the gas and liquid phases J. Chem. Phys. 86 3944... [Pg.897]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

The first study in which a full CASSCE treatment was used for the non-adiabatic dynamics of a polyatomic system was a study on a model of the retinal chromophore [86]. The cis-trans photoisomerization of retinal is the primary event in vision, but despite much study the mechanism for this process is still unclear. The minimal model for retinal is l-cis-CjH NHj, which had been studied in an earlier quantum chemisti7 study [230]. There, it had been established that a conical intersection exists between the Si and So states with the cis-trans defining torsion angle at approximately a = 80° (cis is at 0°). Two... [Pg.305]

A kinetic scheme and a potential energy curve picture ia the ground state and the first excited state have been developed to explain photochemical trans—cis isomerization (80). Further iavestigations have concluded that the activation energy of photoisomerization amounts to about 20 kj / mol (4.8 kcal/mol) or less, and the potential barrier of the reaction back to the most stable trans-isomer is about 50—60 kJ/mol (3). [Pg.496]

Indazole -> benzimidazole photoisomerization involves a singlet state and has been determined to be monomolecular and monophotonic. The UV spectrum of an intermediate with a lifetime of the order of seconds was recorded. Irradiation of the indazole (526) resulted in a 96% yield of the 1-methylbenzimidazole (528) probably via the intermediate (527)... [Pg.160]

The photoisomerization of aromatic rings has also been studied using 1,3,5-tri-t-butylbenzene. The composition of the photostationary state is shown below ... [Pg.780]

The irradiation of 2- and 3-cyanothiophene gave interesting results in agreement with the scheme described above (Scheme 19). The photoisomerization reaction involved only the excited singlet state and Dewar thiophenes were isolated when the reactions were carried out at -68°C and shown to be intermediates in the isomerization reactions [79JCS(CC)881 79JCS(CC)966]. [Pg.58]

The non-preservation of cis stereochemistry of dienophiles 24 and 26 in the adducts 25 and 27 is due to a cis-trans photoisomerization of the double bond and to the concerted suprafacial Diels-Alder cycloaddition of diene to the ground state of trans dienophiles. [Pg.25]

Figure 55. Two-dimensional coupled potential energy surfaces and the wavepacket motion, (a) Si — S2 surfaces and (b) Si — So surfaces. The black, gray, and white circles and dotted lines indicate the locations of the FC region. Si - S2 conical intersection minimum, 5MR Si — So conical intersection minimum, and seam lines, respectively. The solid arrows indicate the schematic wavepacket pathway in the case of natural photoisomerization starting from the vibrational ground state. Taken from Ref. [49]. Figure 55. Two-dimensional coupled potential energy surfaces and the wavepacket motion, (a) Si — S2 surfaces and (b) Si — So surfaces. The black, gray, and white circles and dotted lines indicate the locations of the FC region. Si - S2 conical intersection minimum, 5MR Si — So conical intersection minimum, and seam lines, respectively. The solid arrows indicate the schematic wavepacket pathway in the case of natural photoisomerization starting from the vibrational ground state. Taken from Ref. [49].
The validity of the above conclusions rests on the reliability of theoretical predictions on excited state barriers as low as 1-2 kcal mol . Of course, this required as accurate an experimental check as possible with reference to both the solvent viscosity effects, completely disregarded by theory, and the dielectric solvent effects. As for the photoisomerization dynamics, the needed information was derived from measurements of fluorescence lifetimes (x) and quantum yields (dielectric constant, where extensive formation of ion pairs may occur [60], the observed photophysical properties are confidently referable to the unperturbed BMPC cation. Figure 6 shows the temperature dependence of the... [Pg.391]

In summary, all the experiments expressly selected to check the theoretical description provided fairly clear evidence in favour of both the basic electronic model proposed for the BMPC photoisomerization (involving a TICT-like state) and the essential characteristics of the intramolecular S and S, potential surfaces as derived from CS INDO Cl calculations. Now, combining the results of the present investigation with those of previous studies [24,25] we are in a position to fix the following points about the mechanism and dynamics of BMPC excited-state relaxation l)photoexcitation (So-Si)of the stable (trans) form results in the formation of the 3-4 cis planar isomer, as well as recovery of the trans one, through a perpendicular CT-like S] minimum of intramolecular origin, 2) a small intramolecular barrier (1.-1.2 kcal mol ) is interposed between the secondary trans and the absolute perp minima, 3) the thermal back 3-4 cis trans isomerization requires travelling over a substantial intramolecular barrier (=18 kcal moM) at the perp conformation, 4) solvent polarity effects come into play primarily around the perp conformation, due to localization of the... [Pg.396]


See other pages where Photoisomerization state is mentioned: [Pg.258]    [Pg.407]    [Pg.433]    [Pg.235]    [Pg.271]    [Pg.235]    [Pg.294]    [Pg.258]    [Pg.407]    [Pg.433]    [Pg.235]    [Pg.271]    [Pg.235]    [Pg.294]    [Pg.739]    [Pg.854]    [Pg.3033]    [Pg.376]    [Pg.228]    [Pg.767]    [Pg.767]    [Pg.318]    [Pg.251]    [Pg.604]    [Pg.55]    [Pg.258]    [Pg.749]    [Pg.106]    [Pg.183]    [Pg.184]    [Pg.184]    [Pg.185]    [Pg.188]    [Pg.188]    [Pg.232]    [Pg.365]    [Pg.381]    [Pg.386]    [Pg.388]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Photoisomerism

Photoisomerization

© 2024 chempedia.info