Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photodissociation techniques

Davis and Okabe (5 ) employed a direct photodissociation technique to obtain dissociation energies for many of the same molecules. The method detemlnes the disappearance threshold for fluorescence due to decay of excited CN This... [Pg.613]

Flowever, in order to deliver on its promise and maximize its impact on the broader field of chemistry, the methodology of reaction dynamics must be extended toward more complex reactions involving polyatomic molecules and radicals for which even the primary products may not be known. There certainly have been examples of this notably the crossed molecular beams work by Lee [59] on the reactions of O atoms with a series of hydrocarbons. In such cases the spectroscopy of the products is often too complicated to investigate using laser-based techniques, but the recent marriage of intense syncluotron radiation light sources with state-of-the-art scattering instruments holds considerable promise for the elucidation of the bimolecular and photodissociation dynamics of these more complex species. [Pg.881]

Transient, or time-resolved, techniques measure tire response of a substance after a rapid perturbation. A swift kick can be provided by any means tliat suddenly moves tire system away from equilibrium—a change in reactant concentration, for instance, or tire photodissociation of a chemical bond. Kinetic properties such as rate constants and amplitudes of chemical reactions or transfonnations of physical state taking place in a material are tlien detennined by measuring tire time course of relaxation to some, possibly new, equilibrium state. Detennining how tire kinetic rate constants vary witli temperature can further yield infonnation about tire tliennodynamic properties (activation entlialpies and entropies) of transition states, tire exceedingly ephemeral species tliat he between reactants, intennediates and products in a chemical reaction. [Pg.2946]

Detailed reaction dynamics not only require that reagents be simple but also that these remain isolated from random external perturbations. Theory can accommodate that condition easily. Experiments have used one of three strategies. (/) Molecules ia a gas at low pressure can be taken to be isolated for the short time between coUisions. Unimolecular reactions such as photodissociation or isomerization iaduced by photon absorption can sometimes be studied between coUisions. (2) Molecular beams can be produced so that motion is not random. Molecules have a nonzero velocity ia one direction and almost zero velocity ia perpendicular directions. Not only does this reduce coUisions, it also aUows bimolecular iateractions to be studied ia intersecting beams and iacreases the detail with which unimolecular processes that can be studied, because beams facUitate dozens of refined measurement techniques. (J) Means have been found to trap molecules, isolate them, and keep them motionless at a predetermined position ia space (11). Thus far, effort has been directed toward just manipulating the molecules, but the future is bright for exploiting the isolated molecules for kinetic and dynamic studies. [Pg.515]

Vibrationally mediated photodissociation (VMP) can be used to measure the vibrational spectra of small ions, such as V (OCO). Vibrationally mediated photodissociation is a double resonance technique in which a molecule first absorbs an IR photon. Vibrationally excited molecules are then selectively photodissociated following absorption of a second photon in the UV or visible [114—120]. With neutral molecules, VMP experiments are usually used to measure the spectroscopy of regions of the excited-state potential energy surface that are not Franck-Condon accessible from the ground state and to see how different vibrations affect the photodissociation dynamics. In order for VMP to work, there must be some wavelength at which vibrationally excited molecules have an electronic transition and photodissociate, while vibrationally unexcited molecules do not. In practice, this means that the ion has to have a... [Pg.343]

Unfortunately, predissociation of the excited-state limits the resolution of our photodissociation spectrum of FeO. One way to overcome this limitation is by resonance enhanced photodissociation. Molecules are electronically excited to a state that lies below the dissociation limit, and photodissociate after absorption of a second photon. Brucat and co-workers have used this technique to obtain a rotationally resolved spectrum of CoO from which they derived rotational... [Pg.348]

The V (OCO) ion has a structured electronic photodissociation spectrum, which allows us to measure its vibrational spectrum using vibrationally mediated photodissociation (VMP). This technique requires that the absorption spectrum (or, in our case, the photodissociation spectrum) of vibrationally excited molecules differ from that of vibrationally unexcited molecules. The photodissociation spectrum of V (OCO) has an extended progression in the V OCO stretch, indicating that the ground and excited electronic states have different equilibrium V "—OCO bond lengths. Thus, the OCO antisymmetric stretch frequency Vj should be different in the two states, and the... [Pg.357]

Compared to the H-atom Rydberg tagging technique,65 the resolution of the present method is somewhat worse, by about a factor of two. This loss in resolution, however, is realized in general only for photodissociation studies. In a typical crossed beam experiment, the product translational energy resolution is usually limited by the energy spread of the initial collision energy rather than the detection scheme. On the other hand, the present... [Pg.37]

H2 molecular beam. The H-atom products were detected by the Rydberg tagging TOF technique using the same scheme described in the last paragraph with a rotatable MCP detector. Figure 4 shows the experimental scheme of the crossed beam setup for the 0(1D) + H2 reactive scattering studies. The scheme used for the H + D2(HD) studies is very similar to that used in the 0(1D) + H2 except that the H-atom beam source is generated from HI photodissociation rather than the 0(1D)-atom beam source from 02 photodissociation. [Pg.95]

The time-of-flight spectrum of the H-atom product from the H20 photodissociation at 157 nm was measured using the HRTOF technique described above. The experimental TOF spectrum is then converted into the total product translational distribution of the photodissociation products. Figure 5 shows the total product translational energy spectrum of H20 photodissociation at 157.6 nm in the molecular beam condition (with rotational temperature 10 K or less). Five vibrational features have been observed in each of this spectrum, which can be easily assigned to the vibrationally excited OH (v = 0 to 4) products from the photodissociation of H20 at 157.6 nm. In the experiment under the molecular beam condition, rotational structures with larger N quantum numbers are partially resolved. By integrating the whole area of each vibrational manifold, the OH vibrational state distribution from the H2O sample at 10 K can be obtained. In... [Pg.96]

Recently, the photodissociation process, HOD + hv — OD + H, has also been studied at the 121.6 nm using the experimental technique described above. Contributions from H2O were then subtracted from the results of the mixed sample. The experimental TOF spectra of the H atom from HOD were then converted into translational energy spectra in the center-of-mass frame. Figure 17 shows the translational energy spectra of the H-atom products at 121.6 nm excitation using two different polarization schemes... [Pg.117]


See other pages where Photodissociation techniques is mentioned: [Pg.13]    [Pg.88]    [Pg.730]    [Pg.295]    [Pg.436]    [Pg.13]    [Pg.13]    [Pg.55]    [Pg.118]    [Pg.1675]    [Pg.145]    [Pg.584]    [Pg.594]    [Pg.618]    [Pg.13]    [Pg.88]    [Pg.730]    [Pg.295]    [Pg.436]    [Pg.13]    [Pg.13]    [Pg.55]    [Pg.118]    [Pg.1675]    [Pg.145]    [Pg.584]    [Pg.594]    [Pg.618]    [Pg.800]    [Pg.2084]    [Pg.2948]    [Pg.321]    [Pg.276]    [Pg.280]    [Pg.239]    [Pg.341]    [Pg.341]    [Pg.367]    [Pg.406]    [Pg.57]    [Pg.396]    [Pg.2]    [Pg.3]    [Pg.13]    [Pg.14]    [Pg.20]    [Pg.20]    [Pg.90]    [Pg.93]    [Pg.97]    [Pg.99]    [Pg.100]    [Pg.101]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Experimental techniques photodissociation dynamics

Photodissociating

Photodissociation

Photodissociation laser techniques

Photodissociations

© 2024 chempedia.info