Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical cross-linkers

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Methacrylate monoliths have been fabricated by free radical polymerization of a number of different methacrylate monomers and cross-linkers [107,141-163], whose combination allowed the creation of monolithic columns with different chemical properties (RP [149-154], HIC [158], and HILIC [163]) and functionalities (lEX [141-153,161,162], IMAC [143], and bioreactors [159,160]). Unlike the fabrication of styrene monoliths, the copolymerization of methacrylate building blocks can be accomplished by thermal [141-148], photochemical [149-151,155,156], as well as chemical [154] initiation. In addition to HPLC, monolithic methacrylate supports have been subjected to numerous CEC applications [146-148,151]. Acrylate monoliths have been prepared by free radical polymerization of various acrylate monomers and cross-linkers [164-172]. Comparable to monolithic methacrylate supports, chemical [170], photochemical [164,169], as well as thermal [165-168,171,172] initiation techniques have been employed for fabrication. The application of acrylate polymer columns, however, is more focused on CEC than HPLC. [Pg.30]

Poly(acrylic acid) and Poly(rnethacrylic acid). Poly(acrylic acid) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (widi cross-linker for superadsorber applications) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78°C provides a syndiotactic form that can be hydrolyzed to syndiotactic PAA. [Pg.1738]

Photochemical switches are also discussed in Special Topic 6.15 (Scheme 6.161) and Special Topic 6.19 (Scheme 6.207). Here we illustrate the photoswitching process, which can control the geometry of biomolecules.1101 When an azobenzene-derived cross-linker in the DNA-recognition helix of the transcriptional activator MyoD is irradiated at 360 nm, the linker predominantly attains a Z-configuration that significantly stabilizes the helix (Scheme 6.193).1209 Reverse isomerization can proceed either thermally or photochemically at a different wavelength therefore, the process is photochromic (Special Topic 6.15). [Pg.366]

P. E. Nielsen, J. B. Hansen and O. Buchardt, Photochemical cross-linking of protein and DNA in chromatin. 1. Synthesis and application of a photosensitive cleavable derivative of 9-aminoacridine with 2 photoprobes connected through a disulfide-containing linker, Biochem. J., 1984, 223, 519-526. [Pg.545]

Formation of a siloxane network via hydrosilylation can also be initiated by a free-radical mechanism (300-302). A photochemical route makes use of photosensitizers such as peresters to generate radicals in the system. Unfor-timately, the reaction is quite sluggish. Several complexes of platinum such as (jj-cyclopentadienyl)trialkylplatinum(rV) compoimds have been found to be photoactive. The mixture of silicone polymer containing alkenyl functional groups with silicon hydride cross-linker materials and a catalytic amoimt of a cy-clopentadienylplatinum(IV) compound is stable in the dark. Under UV radiation, however, the platinum complex imdergoes rapid decomposition with release of platinum species that catalyze rapid hydrosilylation and network formation (303-308). Other UV-active hydrosilylation catalyst precursors include (acetylacetonate)Pt(CH3)3 (309), (acetylacetonate)2Pt (310-312), platinum tri-azene compounds (313,314), and other sytems (315,316). [Pg.7595]

Superabsorbent polyacrylates are prepared by means of free-radical-initiated copolymerization of acrylic acid and its salts with a cross-linker (12,13). Two principal processes are used bulk, aqueous solution pol5unerization and suspension polymerization of aqueous monomer droplets in a hydrocarbon liquid continuous phase (14) (see Bulk and Solution Polymerizations Reactors Heterophase Polymerization). In either process, the monomers are dissolved in water at concentrations of 20-40 wt% and the polymerization is initiated by free radicals in the aqueous phase (15). The initiators, freeradical (qv) used include thermally decomposable initiators, reduction-oxidation systems, and photochemical initiators and combinations. Redox systems include persulfate/bisulfite, persulfate/thiosulfate, persulfate/ascorbate, and hydrogen peroxide/ascorbate. Thermal initiators include persulfates, 2,2 -azobis(2-amidinopropane)-dihydrochloride, and 2,2 -azobis(4-cyanopentanoic acid). Combinations of initiators are useful for polymerizations taking place over a temperature range. [Pg.8030]

Some examples of multifunctional epoxy resins other than epoxy phenol novolac resins are depicted in Figure 2.39 (b), (c) and (d). Triglycidylisocyanurate is a solid trifunctional epoxy cross-linker used in powder coatings, which provides a higher cross-link density and superior photochemical stability compared to BPA epoxy resins. The use of triglycidyl isocyanurate may present toxicity hazards. [Pg.97]

Kitagawa and coworkers have recently described an interesting but different host-guest-polymerization concept to synthesize cross-linked polymers such as polystyrene, methylmethacrylate, and vinylacetate with pseudo-crystallinity in non-photochemical route [57]. In order to achieve this, they have first incorporated the cross-linker 2,5-divinyl-benzene-1,4-dicarboxylate (DVTP) into the porous CP [Cu(DVTP)(triethylenediamine)o.5] (51). The host framework containing porous channels with dangling vinyl groups provides a suitable environment for radical polymerization of these monomers as shown in Fig. 31. This is obviously different from photopolymerization by [2+2] cycloaddition reaction. [Pg.134]


See other pages where Photochemical cross-linkers is mentioned: [Pg.20]    [Pg.20]    [Pg.174]    [Pg.179]    [Pg.32]    [Pg.167]    [Pg.181]    [Pg.66]    [Pg.21]    [Pg.9]    [Pg.459]    [Pg.846]    [Pg.160]    [Pg.40]    [Pg.295]    [Pg.427]    [Pg.170]    [Pg.172]    [Pg.413]    [Pg.146]    [Pg.1735]    [Pg.313]    [Pg.1691]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Cross-linker

© 2024 chempedia.info