Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photocatalysts, redox

Redox reactions with metal porphyrins (MPs) as photocatalysts. A spectacular example here is the reaction that couples upon illumination with the sunlight, methanol oxidation to formaldehyde with the formation of hydrogen peroxide in be nzene-methanol mixture (90 10)... [Pg.38]

Figure 4.12 Schematic representation of the proposed reaction mechanism for overall photocatalytic water splitting using 03 - redox mediator and a mixture of Pt-Ti02-anatase and Ti02-rutile photocatalysts. Adapted from [161] (2001) with permission from Elsevier. Figure 4.12 Schematic representation of the proposed reaction mechanism for overall photocatalytic water splitting using 03 - redox mediator and a mixture of Pt-Ti02-anatase and Ti02-rutile photocatalysts. Adapted from [161] (2001) with permission from Elsevier.
Abe, R., Sayama, K., Domen, K., and Arakawa, H. (2001) A new type of water splitting system composed of two different Ti02 photocatalysts (anatase, rutile) and a IOj"/r shuttle redox mediator. Chemical Physics Letters, 344 (3-4), 339-344. [Pg.130]

It is possible that colloidal photochemistry will provide a new approach to prebiotic syntheses. The work described previously on redox reactions at colloidal ZnS semiconductor particles has been carried on successfully by S. T. Martin and co-workers, who studied reduction of CO2 to formate under UV irradiation in the aqueous phase. ZnS acts as a photocatalyst in the presence of a sulphur hole scavenger oxidation of formate to CO2 occurs in the absence of a hole scavenger. The quantum efficiency for the formate synthesis is 10% at pH 6.3 acetate and propionate were also formed. The authors assume that the primeval ocean contained semiconducting particles, at the surface of which photochemical syntheses could take place (Zhang et al 2007). [Pg.199]

This means that the photoelectron is transferred to an electron acceptor concomitantly with trapping of the photohole by an electron donor (Fig. 10.1). Semiconductor materials have been tested as photocatalysts for the photodissociation of water. Fig. 10.4 shows the energetics in terms of standard redox potential of some semiconductors as compared to the standard redox potential of H2/H+ and H20/02 at pH 0. [Pg.341]

K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IOJ/I shuttle redox mediator under visible light irradiation, Chem. Commun. 23, 2416-2417 (2001). [Pg.138]

Interestingly, titanium dioxide can also act as a photocatalyst [87]. In some investigations into these phenomena a moisture-mediated redox reaction has been postulated. [Pg.36]

Various pairs of inorganic ions such as lOsVr, Fe /Fe, and Ce /Ce have been used as redox mediators to facilitate electron-hole separation in metal loaded oxide semiconductor photocatalysts [105-107], Two different photocatalysts, Pt-Ti02 (anatase) and Ti02 (rutile), suspended in an aqueous solution of Nal were employed to produce H2 and O2 under, respectively, the mediation of 1 (electron donor) and IOs (electron acceptor) [105]. The following steps are involved in a one-cell reaction in the presence of UV light. [Pg.392]

Even without deposition of a metal island, such powders often maintain photoactivity. The requirement for effective photoelectrochemical conversion on untreated surfaces is that either the oxidation or reduction half reaction occur readily on the dark material upon application of an appropriate potential, so that one of the photogenerated charge carries can be efficiently scavenged. Thus, for some photoinduced redox reactions, metallization of the semiconductor photocatalyst will be essential, whereas for others platinization will have nearly no effect. [Pg.74]

Poly(pyridyl)ruthenium complexes, typically, [Ru(bpy)3]2+ have frequently been used as photocatalysts in the redox reactions between electron donors (Dred) and acceptors (Aox) to yield the oxidized (Dox) and reduced (Ared) forms (Eq. 20) [34-37] ... [Pg.126]

Careful inspection of the reported photocatalytic reactions may demonstrate that reaction products can not be classified, in many cases, into the two above categories, oxidation and reduction of starting materials. For example, photoirradiation onto an aqueous suspension of platinum-loaded Ti02 converts primary alkylamines into secondary amines and ammonia, both of which are not redox products.34) ln.a similar manner, cyclic secondary amines, e.g., piperidine, are produced from a,co-diamines.34) Along this line, trials of synthesis of cyclic imino acids such as proline or pipecolinic acid (PCA) from a-amino acids, ornithine or lysine (Lys), have beer. successfuL35) Since optically pure L-isomer of a-amino acids are available in low cost, their conversion into optically active products is one of the most important and practical chemical routes for the synthesis of chiral compounds. It should be noted that l- and racemic PCA s are obtained from L-Lys by Ti02 and CdS photocatalyst, respectively. This will be discussed later in relation to the reaction mechanism. [Pg.279]

Photoexcitation of n-type semiconductors renders the surface highly activated toward electron transfer reactions. Capture of the photogenerated oxidizing equivalent (hole) by an adsorbed oxidizable organic molecule initiates a redox sequence which ultimately produces unique oxidation products. Furthermore, specific one electron routes can be observed on such irradiated surfaces. The irradiated semiconductor employed as a single crystalline electrode, as an amorphous powder, or as an optically transparent colloid, thus acts as both a reaction template and as a directed electron acceptor. Recent examples from our laboratory will be presented to illustrate the control of oxidative cleavage reactions which can be achieved with these heterogeneous photocatalysts. [Pg.69]

We have shown how the band structure of photoexcited semiconductor particles makes them effective oxidation catalysts. Because of the heterogeneous nature of the photoactivation, selective chemistry can ensue from preferential adsorption, from directed reactivity between adsorbed reactive intermediates, and from the restriction of ECE processes to one electron routes. The extension of these experiments to catalyze chemical reductions and to address heterogeneous redox reactions of biologically important molecules should be straightforward. In fact, the use of surface-modified powders coated with chiral polymers has recently been reputed to cause asymmetric induction at prochiral redox centers. As more semiconductor powders become routinely available, the importance of these photocatalysts to organic chemistry is bound to increase. [Pg.77]

The redox potentials of the valence and conduction bands for different semiconductors varies between +4.0 and —1.5 volts vs. the normal hydrogen electrode (NHE), respectively. Therefore, by careful selection of the photocatalyst a wide range of molecules can be converted via these processes [3]. [Pg.337]


See other pages where Photocatalysts, redox is mentioned: [Pg.2]    [Pg.257]    [Pg.2]    [Pg.257]    [Pg.292]    [Pg.180]    [Pg.38]    [Pg.413]    [Pg.364]    [Pg.110]    [Pg.110]    [Pg.227]    [Pg.265]    [Pg.440]    [Pg.356]    [Pg.367]    [Pg.370]    [Pg.376]    [Pg.377]    [Pg.443]    [Pg.121]    [Pg.122]    [Pg.253]    [Pg.259]    [Pg.421]    [Pg.425]    [Pg.427]    [Pg.91]    [Pg.712]    [Pg.74]    [Pg.22]    [Pg.61]    [Pg.280]    [Pg.326]    [Pg.337]    [Pg.79]    [Pg.92]   
See also in sourсe #XX -- [ Pg.277 , Pg.281 ]




SEARCH



Photocatalyst

Photocatalysts

Photocatalysts, redox catalysis

© 2024 chempedia.info