Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorylation organization

The mixture of various catalytic multimers, like thioesters and phosphorylated organic molecules, presents the background for a protometabolism in the thioester world theory. Protometabolitic reaction pathways rapidly form networks. The latter would have included cyclic mass flows that are stabilized by interactions among metabolites. These pathways could have occurred in associations with pyrite, clays or iron dioxide flocks produced by UV photooxidation. [Pg.48]

Kinases, a subset of the class of transferases, constitute a large group of enzymes that phosphorylate organic substrates ... [Pg.97]

Substrate-level phosphorylation. Prodnction of adenosine triphosphate (ATP) by the direct transfer of a high-energy phosphate molecnle to adenosine diphosphate (ADP) dnring catabolism of a phosphorylated organic componnd. It occurs under both aerobic and anaerobic conditions. [Pg.17]

Various inorganic, organic, and organometaUic compounds are known to cataly2e this polymerization (4,8,9). Among these, BCl is a very effective catalyst, although proprietary catalysts that signiftcandy lower polymerization temperature from the usual, sealed-tube reaction at 250°C are involved in the industrial manufacture of the polymer. A polycondensation process has also been developed for the synthesis of (4) (10—12). This involves elimination of phosphoryl chloride from a monomer prepared from (NH 2 04 and PCl. ... [Pg.257]

A simpler nonphosgene process for the manufacture of isocyanates consists of the reaction of amines with carbon dioxide in the presence of an aprotic organic solvent and a nitrogeneous base. The corresponding ammonium carbamate is treated with a dehydrating agent. This concept has been apphed to the synthesis of aromatic and aUphatic isocyanates. The process rehes on the facile formation of amine—carbon dioxide salts using acid haUdes such as phosphoryl chloride [10025-87-3] and thionyl chloride [7719-09-7] (30). [Pg.448]

A Acetylation, O-Phosphorylation, and O-Adenylylation. A/-Acetylation, O-phosphorjiation, and O-adenyljiation provide mechanisms by which therapeutically valuable aminocyclitol antibiotics, eg, kanamycia [8063-07-8] gentamicin [1403-66-3] sisomicin [32385-11-8], streptomycia [57-92-1], neomycin, or spectinomycin are rendered either partially or completely iaactive. Thus, eg, kanamycia B [4696-78-8] (50) can be iaactivated by modification at several sites, as shown. The elucidation of these mechanisms has allowed chemical modification of the sites at which the iaactivation occurs. Several such bioactive analogues, eg, dibekacia and amikacin have been prepared and are not subject to the iaactivation hence, they inhibit those organisms against which the parent antibiotics are iaeffective (96) (see Antibacterial agents, synthetic). [Pg.314]

Phosphate Esters. The phosphorylation of sucrose using sodium metaphosphate has been reported (78). Lyoptulization of a sodium metaphosphate solution of sucrose at pH 5 for 20 hours followed by storage at 80°C for five days produced a mixture of sucrose monophosphates. These products were isolated by preparative hplc, with a calculated yield of 27% based on all organic phosphate as sucrose monoesters. Small proportions of glucose and fmctose were also formed. [Pg.34]

In the tissues of animals, most thiamine is found as its phosphorylated esteis (4—6) and is piedominandy bound to enzymes as the pyrophosphate (5), the active coen2yme form. As expected for a factor involved in carbohydrate metaboHsm, the highest concentrations ate generally found in organs with high activity, such as the heart, kidney, Hver, and brain. In humans this typically amounts to 1—8 p.g/g of wet tissue, with lesser amounts in the skeletal muscles (35). A typical healthy human body may contain about 30 mg of thiamine in all forms, about 40—50% of this being in the muscles owing to their bulk. Almost no excess is stored. Normal human blood contains about 90 ng/mL, mostly in the ted cells and leukocytes. A value below 40 ng/mL is considered indicative of a possible deficiency. Amounts and proportions in the tissues of other animal species vary widely (31,35). [Pg.88]

The procedure described is essentially that of Shioiri and Yamada. Diphenyl phosphorazidate is a useful and versatile reagent in organic synthesis. It has been used for racemlzatlon-free peptide syntheses, thiol ester synthesis, a modified Curtius reaction, an esterification of a-substituted carboxylic acld, formation of diketoplperazines, alkyl azide synthesis, phosphorylation of alcohols and amines,and polymerization of amino acids and peptides. - Furthermore, diphenyl phosphorazidate acts as a nitrene source and as a 1,3-dipole.An example in the ring contraction of cyclic ketones to form cycloalkanecarboxylic acids is presented in the next procedure, this volume. [Pg.188]

The abundance of many protein kinases in cells is an indication of the great importance of protein phosphorylation in cellular regulation. Exactly 113 protein kinase genes have been recognized in yeast, and it is estimated that the human genome encodes more than 1000 different protein kinases. Tyrosine kinases (protein kinases that phosphorylate Tyr residues) occur only in multicellular organisms (yeast has no tyrosine kinases). Tyrosine kinases are components of signaling pathways involved in cell-cell communication (see Chapter 34). [Pg.466]

The thylakoid membrane is asymmetrically organized, or sided, like the mitochondrial membrane. It also shares the property of being a barrier to the passive diffusion of H ions. Photosynthetic electron transport thus establishes an electrochemical gradient, or proton-motive force, across the thylakoid membrane with the interior, or lumen, side accumulating H ions relative to the stroma of the chloroplast. Like oxidative phosphorylation, the mechanism of photophosphorylation is chemiosmotic. [Pg.727]

Most ABC-transporters, especially those located in the plasma membrane, are phosphorylated and glycosylated transmembrane proteins of different molecular weights (e.g., P-gp 170 kDa MRP2 190 kDa BCRP 72 kDa). Topologically, most ABC-transporter show a similar structure they are organized in two transmembrane domains (TMD), each consisting of six... [Pg.4]


See other pages where Phosphorylation organization is mentioned: [Pg.579]    [Pg.813]    [Pg.122]    [Pg.504]    [Pg.421]    [Pg.425]    [Pg.381]    [Pg.579]    [Pg.813]    [Pg.122]    [Pg.504]    [Pg.421]    [Pg.425]    [Pg.381]    [Pg.420]    [Pg.532]    [Pg.46]    [Pg.97]    [Pg.555]    [Pg.278]    [Pg.200]    [Pg.286]    [Pg.426]    [Pg.75]    [Pg.124]    [Pg.89]    [Pg.272]    [Pg.20]    [Pg.65]    [Pg.124]    [Pg.125]    [Pg.259]    [Pg.428]    [Pg.559]    [Pg.610]    [Pg.667]    [Pg.700]    [Pg.821]    [Pg.426]    [Pg.780]    [Pg.1127]    [Pg.47]    [Pg.56]    [Pg.56]    [Pg.130]    [Pg.14]   


SEARCH



© 2024 chempedia.info